• Title/Summary/Keyword: Korean Strait

Search Result 368, Processing Time 0.022 seconds

A Systematic Study on the Ophiuroidea in Korea I. Species from The Sea of Japan and the Korean Strait (한국산 사미류의 계통분류학적 연구 I. 동해와 남해 연안에 사는 종)

  • Shin, Sook
    • Animal Systematics, Evolution and Diversity
    • /
    • v.8 no.1
    • /
    • pp.107-132
    • /
    • 1992
  • To perform the systematic study on Korean Ophiuroidea the specimens collected from total 92 localities in the Sea of Japan and the Korea Strait during the period from April, 1969 to October, 1991 were classified, As a result, 41 phiuroid species belonging to 18 genera, 8 families, 4 suborders and 2 orders were identified , of which 6 species, namely, Ophiactis brachygenys, Ophiactis modesta, Ophiopholis brachyactis, Amphioda cyclaspis, Amphipholis kichii, Ophionereis eurybrachyiplax have not been reported in Kiorea before. With regard to the distribution of species , 24 species (58.5%) were found only in the Korea Strait, 9 species (22.0%) occurred either in the Sea of Japan and the Korean Strait and 8 species (19.5%) only in the Sea of Japan. Ophiothrix exigua was predominantly collected from 44 localities of total 92 localities examined and also from the Korea Strait, but Ophiura sarsii was the commonest speices in the SEa of Kapn . Eighteen temperature species(43.9%) were found in the greatest number, and then 15 tropical species (36.6%) , 7 boreal species (17.1%) and 1 cosmopolitan species(2.4%) were found.

  • PDF

THE TATAR STRAIT SEA LEVEL SESONAL VARITIONS BY SAT-ELLITE ALTIMETRY DATA

  • Sedaeva, Olga;Romanov, Alexander;Vilyanskaya, Elena;Shevchenko, Georgy
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.844-847
    • /
    • 2006
  • In this work Topex/Poseidon altimeter data 1993 - 2002 were used. There are three altimetry tracks (one ascending and two descending) that cross Tatar Strait. The data were collected in the points of sub-satellite tracks with the step 0.25 degree. 10-years average values were calculated for each month. The seasonal sea level variations were compared with tide gauges data. The well expressed annual cycle (with maximum at July-August and the minimum at February-March) prevails in the Tartar Strait. However, the seasonal variations expressed much weakly in both the altimetry track points and Kholmsk - Nevelsk tide-gauges that locate close to La Perouse Strait because of Okhotsk Sea influence. The sea level slopes between the Sakhalin Island and the continent coasts were analyzed in different seasons. We found that sea level increases near Sakhalin coast in spring and summer that corresponds to the northward flow. In autumn, otherwise, the sea level decreases near Sakhalin Island that corresponds to southward current. This result is verified by the CTD data gathered on the standard sections. Well-expressed upwelling is observed near coastline of Sakhalin Island in fall season. This phenomenon is caused by the northerly and the northwesterly wind which are typical for cold season.

  • PDF

Spatial and Monthly Changes of Sea Surface Temperature, Sea Surface Salinity, Chlorophyll a, and Zooplankton Biomass in Southeastern Alaska: Implications for Suitable Conditions for Survival and Growth of Dungeness Crab Zoeae

  • Park, Won-Gyu
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.3
    • /
    • pp.133-142
    • /
    • 2007
  • To investigate conditions for the survival and growth of Dungeness crab zoeae in situ, spatial and monthly changes of sea surface temperature (SST), sea surface salinity (SSS), Chlorophyll ${\alpha}$ (Chl ${\alpha}$), and zooplankton biomass were measured in four transects: upper Chatham, Icy Strait, Cross Sound, and Icy Point in southeastern Alaska from May to September, 1997-2004. Monthly mean SST was coldest in May, increased throughout the summer months, and decreased in September. SST was coldest in the Cross Sound transect, intermediate in the upper Chatham and Icy Strait transects, and warmest in the Icy Point transect. SSS of northern stations in the upper Chatham and Icy Strait transects decreased throughout the summer months and increased in September, while that of other transects did not vary. Monthly mean Chl ${\alpha}$ was highest in May and decreased thereafter. Chl ${\alpha}$ in the upper Chatham and Icy Strait transects were relatively higher from May through September than those in the Cross Sound and Icy Point transects. Mean zooplankton biomass was highest in the Icy Strait transect in May and lowest in the Icy Point transect in September. This research suggests that oceanographic conditions during the season of Dungeness crab zoeae in southeastern Alaska may not constrain the survival and growth of Dungeness crab zoeae.

Contribution of Marine Microbes to Particulate Organic Matter in the Korea Strait

  • Kang, Hun;Kang, Dae-Seok
    • Journal of the korean society of oceanography
    • /
    • v.37 no.1
    • /
    • pp.35-44
    • /
    • 2002
  • To assess the relative contribution of bacterial and phytoplankton biomasses to particulate organic matter (POM) in the water column, microbial abundance and biomass were from two transects in the western channel of the Korea Strait in 1996. Bacterial abundance had a mean value of $5.9{\times}10^5$ cells/ml and chlorophyll-a averaged 0.14 ${\mu}g/l$. Bacterial abundance in the Korea Strait showed a positive relationship with chlorophyll-a concentration, while the distribution of POM did not covary with chlorophyll-a. Particulate organic carbon (POC) and nitrogen (PON) concentrations were greater in August than in October. Bacterial carbon (POC) and nitrogen (PON) concentrations were greater in August than in October. Bacterial carbon and nitrogen biomasses were 7.29 ${\mu}gC/l$ and 1.24 ${\mu}gN/l$, respectively, during the study periods. Bacterial biomass was larger in October than in August due to the autumn phytoplankton bloom. Phytoplankton biomass based on chlorophyll-a was 7.67 ${\mu}gC/l$ for carbon and 1.10${\mu}gN/l$l for nitrogen. The ratio of bacterial carbon (BC) to phytoplankton carbon (Cp) averaged 0.95 in the Korea Strait in 1996. Bacteria may play a more significant role in the dynamics of POM than phytoplankton do in August, with BC/Cp ratio of 1.26. The ratio of BC to Cp increased with a decrease in chlorophyll-a concentration. Averaged over all the samples in both cruises, the contribution of microbial biomass to POC and PON was about 43% and 51%, respectively. Bacterial assemblage constituted a significant fraction of POC (21%) and PON (27%). Phytoplankton accounted for 22% of POC and 24% of PON. Microbial biomass played a more important role in the dynamics of POC and PON in October than in August due to a significant increase in microbial biomass in the southern transect (transect-B) in October by the autumn phytoplankton bloom. This study showed that marine microbes may constitute a significant part in the reservoir of POM in the Korea Strait.

Distribution of Walleye Pollock, Theragra chalcogramma, Spawning in Shelikof Strait, Gulf of Alaska, Based on Acoustic and Ichthyoplankton Surveys 1981, 1984 and 1985 (알라스카만 쉘리코프 해협에서 산란하는 명태, Theragra chalcogramma,의 분포에 대하여 : 1981, 1984~85년의 음향학적 조사 및 난치자어 조사)

  • KiM Suam;NUNNALLEE Edmund P.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.6
    • /
    • pp.425-438
    • /
    • 1990
  • Acoustic and ichthyoplankton data collected from Shelikof Strait in 1981, 1984 and 1985 were examined to determine spawning ground and period of walleye pollock, Theragra chalcogramma. Walleye pollock in the Gulf of Alaska migrated into Shelikof Strait for spawning during late winter and early spring. They entered Shelikof Strait via the warm and saline deep layer (continental slope water mass) in the southwestern channel, and major fish schools concentrated for spawning along the deep trough (250~300m) in the western part of the central strait. Peak spawning activity occurred there from late March to early April. Peak spawning time and area in Shelikof Strait varied little between years, despite difference in hydrography. Geographical advantages together with some oceanographic phenomena (reduced water transport and reduced mixed layer depth in spring) made that area an optimal spawning ground in the Gulf of Alaska during early April. After early April, spawning intensity decreased rapidly and the spawning area tended to expand to the northeast and southwest.

  • PDF

A Study on the Shelf Sediments from Korea Strait through Decomposition of Size Curves into Normal Components (입도곡선의 정규성분 분해에 의한 대한해협의 대륙붕 퇴적물 연구)

  • KONG Young Sae;KIM Hee Joon;MIN Geon Hong;LEE Chi Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.3
    • /
    • pp.386-392
    • /
    • 1996
  • A numerical method based on genetic algorithms was introduced to characterize the grain-size distribution more effectively. This technique was proved significant particularly for multimodal size distributions, as was verified for samples from Korea Strait continental shelf. Sediment samples collected from the Korea Strait continental shelf revealed that $96\%$ of the grain-size distributions were multimodal. Therefore, the use of grain-size parameters was not the ideal method. As an alternative method, the decomposition of sue curves into elementary normal component curves was used. Means and standard deviations of 593 decomposed normal components were calculated by a numerical method from 268 size curves of Korea Strait sediments. The mean values of decomposed normal components showed peaks at $1\~3\phi\;and\;7\~9\phi$ size classes. The plot of mean and standard deviation values of the coarse fraction normal components on the map showed a characteristic areal distribution. The characteristic distribution was found to derive from underlying Pleistocene sediment on the basis of sea bottom geologic distribution of the area. The method of decomposition into normal components was found to be more effective than the analysis using traditional grain-size parameters in investigation of multimodal size distribution of Korea Strait shelf sediment.

  • PDF

Climatic Characteristics Related with Sedimentary Process in Bransfield Strait, Antarctica (남극 브랜스필드 해협에서의 퇴적과정과 관련된 기후특성)

  • Lee, Bang-Yong;Kwon, Tae-Yong;Lee, Jeong-Soon;Yoon, Ho-Il;Yoon, Young-Jun
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.4
    • /
    • pp.173-185
    • /
    • 2005
  • This study examines the relationships among sea ice concentration, surface air temperature, surface wind, and SST (Sea Surface Temperature) in Bransfield Strait to understand the climatic characteristics and its related sedimentary process there. In analyses of the monthly data, during the austral autumn (Mar., Apr., and May), the frequency of southeasterlies is correlated positively with the sea ice concentration and negatively with the surface air temperature, whereas that of northwesterlies is reverse. These relationships are explained by the process that the southeasterlies of the cold air from the Antarctic Continent affect the ocean current around Bransfield Strait. And then the ocean current makes the sea ice generated in the Weddell Sea drift into the strait. During the spring (Sep., Oct., and Nov.), sea ice concentration and surface air perature are closely correlated with the frequency of northwesterlies with warm air mass. In the some parts of the northern boundary region, the sea ice concentration in Bransfield Strait is positively correlated with the SST during the autumn and spring. Such relationship may rather propel the sea ice melting in proportion to the sea ice concentration during the autumn.

  • PDF

The Distribution of Chaetognaths in the Korea Strait and Their Relation to the Character of Water Masses (대한해협의 부유성 모악류의 수직분포와 수괴 유동)

  • Park, Joo-suck
    • 한국해양학회지
    • /
    • v.8 no.1
    • /
    • pp.22-32
    • /
    • 1973
  • Based on the plankton samples collected in the Korea Strait in 1972, a study was conducted on the vertical distribution of chaetognaths in relation to water masses in th Strait. The settling volume of total plankton collected in the Strait ranged from 0.3 to 5 cc/10㎥ and showed a distinctive variation in the vertical distribution between day and night. The large amount of volume was found in the upper layer at night and deeper layer during the day time collections. A total of 19 species and one forma of chaetognaths were identified from the present samples. In general, the number of species and individuals of chaetognaths were abundant in the upper layer. But in August they were distributed almost evenly from the surface to the bottom layer. Particularly several species of warm water chaetognaths, i. e., Sagitta enflata and S. regularis appeared abundantly in the deeper layer in summer. This indicates a sinking phenomenon of warm water from the surface to the bottom layer. As for the vertical distribution of S.elegans, a cold water species, in the Korean Strait, it is restricted only to the bottom layer except in the region of upwelling where they appear in the middle layer. This species is usually distributed in the depth of below 150m in the southern part of Japan Sea(Park, 1970), and it is usually distributed as far south as the Strait between Busan and Tsushima. In addtion, cold water species of copepods such as Pseudocalanus minutus and Metridialucens appear in the western side of Thushima. As indicated by the vertical and horizontal distribution of S. elegans in the Strait, the cold water flows as an undercurrent along the bottom from the southern part of the Japan Sea to the Korea Strait between Busan and Thushima in summer and fall, with a trend of uprising along the coast of Korea. S. decipiens has been found only in the depth of below 50m except in the coastal area where they appear in the upper layer. Therefore the vertical distribution of this species can be used for tracing the occurrence of upwelling and the movement of water from the middle layer.

  • PDF

Distribution of Eggs and Larvae of Maurolicus muelleri in the Thermal Front of the Korea Strait (앨퉁이 (Maurolicus muelleri) 난.자치어 분포와 수온전선)

  • Kim, Sung;Yoo, Jae-Myung
    • Korean Journal of Ichthyology
    • /
    • v.11 no.1
    • /
    • pp.62-71
    • /
    • 1999
  • The seasonal distribution of Maurolicus muelleri eggs and larvae were determined using samples collected from the Korea Strait and the southern part of the East Sea in May and November, 1992, August, 1993, and January, 1994. The eggs were most abundant in summer and the larvae in spring, while, their abundance was low in winter. The eggs were mainly found from in all season around sea of the front area of latitude $35{\sim}36^{\circ}N$ and the West Channel of the Korea Strait found the middle or bottom water lower than $15^{\circ}C$. The seasonal distribution of the eggs in the western Korea Strait varied according to the structure of the bottom cold water of the Korea Strait. The M. muelleri larvae in different stage were most abundant in the front area of latitude $35{\sim}36^{\circ}N$. The spawning and hatching area of the M. muelleri was considered to be the front area located in the shelf break, and some eggs can be transported into the Korea Strait by westward cold bottom current in summer. The Korea Strait would be the southern margin of the distribution of Maurolicus muelleri eggs and larvae of the East Sea.

  • PDF

Year-to- Year Variation of Cold Waters around the Korea Strait

  • Min, Hong-Sik;Kim, Young-Ho;Kim, Cheol-Ho
    • Ocean Science Journal
    • /
    • v.41 no.4
    • /
    • pp.227-234
    • /
    • 2006
  • Year-to-year variation of bottom cold waters around the Korea Strait was investigated based on bottom temperatures measured by submarine telephone cable between Pusan, Korea and Hamada, Japan from 1982 to 1992. The characteristics of bottom temperatures could be divided into three different groups: the Korean side, the middle, and the Japanese side. Temperature drops in summer appeared in all the three regions implying the intrusion of cold waters into the Korea Strait. Significant decreases in the Korean side were observed in 1983, 1986, 1990, 1991, and 1992 when bottom temperatures were high in the middle. In contrast, bottom temperatures significantly decreased in the middle in 1985, 1988, and 1989 when the temperature drops in the Korean side were relatively small. This tendency for a negative relationship was also shown in the second mode of an EOF analysis. In the years when bottom temperatures significantly decrease din the Korean side, the cold water along the east coast of Korea expanded offshore and its temperature was low. On the contrary, cold water in the southern region of the Ulleung Basin developed in the years when bottom temperatures decreased considerably in the middle.