• Title/Summary/Keyword: Korean Society of Animal Science and Technology

Search Result 5,004, Processing Time 0.033 seconds

Current technology and industrialization status of cell-cultivated meat

  • Seung Yun Lee;Da Young Lee;Seung Hyeon Yun;Juhyun Lee;Ermie Jr Mariano;Jinmo Park;Yeongwoo Choi;Dahee Han;Jin Soo Kim;Sun Jin Hur
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.1-30
    • /
    • 2024
  • Interest and investment in cultivated meat are increasing because of the realization that it can effectively supply sufficient food resources and reduce the use of livestock. Nevertheless, accurate information on the specific technologies used for cultivated meat production and the characteristics of cultivated meat is lacking. Authorization for the use of cultivated meat is already underway in the United States, Singapore, and Israel, and other major countries are also expected to approve cultivated meat as food once the details of the intricate process of producing cultivated meat, which encompasses stages such as cell proliferation, differentiation, maturation, and assembly, is thoroughly established. The development and standardization of mass production processes and safety evaluations must precede the industrialization and use of cultivated meat as food. However, the technology for the industrialization of cultivated meat is still in its nascent stage, and the mass production process has not yet been established. The mass production process of cultivated meat may not be easy to disclose because it is related to the interests of several companies or research teams. However, the overall research flow shows that equipment development for mass production and cell acquisition, proliferation, and differentiation, as well as for three-dimensional production supports and bioreactors have not yet been completed. Therefore, additional research on the mass production process and safety of cultivated meat is essential. The consumer's trust in the cultivated meat products and production technologies recently disclosed by some companies should also be analyzed and considered for guiding future developments in this industry. Furthermore, close monitoring by academia and the government will be necessary to identify fraud in the cultivated meat industry.

Current Research, Industrialization Status, and Future Perspective of Cultured Meat

  • Seung Hyeon Yun;Da Young Lee;Juhyun Lee;Ermie Mariano Jr;Yeongwoo Choi;Jinmo Park;Dahee Han;Jin Soo Kim;Sun Jin Hur
    • Food Science of Animal Resources
    • /
    • v.44 no.2
    • /
    • pp.326-355
    • /
    • 2024
  • Expectations for the industrialization of cultured meat are growing due to the increasing support from various sectors, such as the food industry, animal welfare organizations, and consumers, particularly vegetarians, but the progress of industrialization is slower than initially reported. This review analyzes the main issues concerning the industrialization of cultured meat, examines research and media reports on the development of cultured meat to date, and presents the current technology, industrialization level, and prospects for cultured meat. Currently, over 30 countries have companies industrializing cultured meat, and around 200 companies that are developing or industrializing cultured meat have been surveyed globally. By country, the United States has over 50 companies, accounting for more than 20% of the total. Acquiring animal cells, developing cell lines, improving cell proliferation, improving the efficiency of cell differentiation and muscle production, or developing cell culture media, including serum-free media, are the major research themes related to the development of cultured meat. In contrast, the development of devices, such as bioreactors, which are crucial in enabling large-scale production, is relatively understudied, and few of the many companies invested in the development of cultured meat have presented products for sale other than prototypes. In addition, because most information on key technologies is not publicly available, it is not possible to determine the level of technology in the companies, and it is surmised that the technology of cultured meat-related startups is not high. Therefore, further research and development are needed to promote the full-scale industrialization of cultured meat.

Surface-Displayed IL-10 by Recombinant Lactobacillus plantarum Reduces Th1 Responses of RAW264.7 Cells Stimulated with Poly(I:C) or LPS

  • Cai, Ruopeng;Jiang, Yanlong;Yang, Wei;Yang, Wentao;Shi, Shaohua;Shi, Chunwei;Hu, Jingtao;Gu, Wei;Ye, Liping;Zhou, Fangyu;Gong, Qinglong;Han, Wenyu;Yang, Guilian;Wang, Chunfeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.421-431
    • /
    • 2016
  • Recently, poly-γ-glutamic acid synthetase A (pgsA) has been applied to display exogenous proteins on the surface of Lactobacillus casei or Lactococcus lactis, which results in a surface-displayed component of bacteria. However, the ability of carrying genes encoded by plasmids and the expression efficiency of recombinant bacteria can be somewhat affected by the longer gene length of pgsA (1,143 bp); therefore, a truncated gene, pgsA, was generated based on the characteristics of pgsA by computational analysis. Using murine IL-10 as an exogenous gene, recombinant Lactobacillus plantarum was constructed and the capacity of the surface-displayed protein and functional differences between exogenous proteins expressed by these strains were evaluated. Surface expression of IL-10 on both recombinant bacteria with anchorins and the higher expression levels in L. plantarum-pgsA'-IL-10 were confirmed by western blot assay. Most importantly, up-regulation of IL-1β, IL-6, TNF-α, IFN-γ, and the nuclear transcription factor NF-κB p65 in RAW264.7 cells after stimulation with Poly(I:C) or LPS was exacerbated after co-culture with L. plantarum-pgsA. By contrast, IL-10 expressed by these recombinant strains could reduce these factors, and the expression of these factors was associated with recombinant strains that expressed anchorin (especially in L. plantarum-pgsA'-IL-10) and was significantly lower compared with the anchorin-free strains. These findings indicated that exogenous proteins could be successfully displayed on the surface of L. plantarum by pgsA or pgsA', and the expression of recombinant bacteria with pgsA' was superior compared with bacteria with pgsA.

Effect of Different Packaging Atmosphere on Microbiological Shelf Life, Physicochemical Attributes, and Sensory Characteristics of Chilled Poultry Fillets

  • Nauman, Kashif;Jaspal, Muhammad Hayat;Asghar, Bilal;Manzoor, Adeel;Akhtar, Kumayl Hassan;Ali, Usman;Ali, Sher;Nasir, Jamal;Sohaib, Muhammad;Badar, Iftikhar Hussain
    • Food Science of Animal Resources
    • /
    • v.42 no.1
    • /
    • pp.153-174
    • /
    • 2022
  • This trial was conducted to evaluate the effect of overwrap, vacuum, and modified atmosphere packaging (MAP) on poultry breast fillets' microbiological, biochemical shelf life and sensory attributes. The fillets were divided into 4 groups, and each of the treatments was replicated 3 times with 60 breast fillets. The first group was a control group with overwrap packaging; the second group was vacuum packed (VP); the third and fourth groups were MAP-1: 0% O2, 40% CO2, 60% N2, and MAP-2: 20% O2, 40% CO2, 40% N2. The microbiological and biochemical analyses were performed for the total viable count, coliform count, Pseudomonas count, Salmonella count, total volatile basic nitrogen (TVB-N), pH, cooking loss, color, lipid oxidation, tenderness, and sensory analysis. The data were analysed through two-way ANOVA by Minitab (Minitab 17.3.1). Meat treated with understudy MAP compositions and vacuum packaging reduced total viable count, Pseudomonas count, and total coliform count than control (p<0.05). TVB-N remained below the recommended limit throughout storage except aerobic packaging (p<0.05). Cooking loss (%) was lowered and showed non-significant results (p>0.05) between vacuum packaging and both MAP concentrations. The meat stored in MAP-2 was characterised by higher (p<0.05) visual scores. Whilst MAP-1 showed higher (p<0.05) L* values and overall acceptability. Sample packaged under aerobic packaging showed significant (p<0.05) results for b* and thiobarbituric acid reactive substances (TBARS). Meat stored in aerobic packaging showed higher (p<0.05) shear force values. The outcome of this trial may help to promote the application of understudy MAP compositions and rapid detection of microbes by biochemical analysis under local conditions.

In Vitro Maturation of Tiger Oocytes: Case Report

  • Lee, Hyosang;Yin, Xijun;Lee, Youngho;Jeon, Sejin;Suh, Yongil;Jo, Sujin;Choi, Eugene;Min, Wongi;Oh, Donghan;Kong, Ilkeun
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.200-200
    • /
    • 2004
  • The purpose of this study was carried out to determine the possibility of in vitro maturation of tiger oocytes. Immature oocytes were recovered from a pairs of ovaries. A total of 78 oocytes were collected, of which forty threes were identified as compact cumulus cells and uniform cytoplasm. 43 COCs were in vitro matured at 39℃, 5% CO₂ in air atmosphere for 48 h in a IVM medium (TCM-199 supplement with 10% FBS, 0.6 mM cysteine, 0.2 mM pyruvic acid and 10 IU/㎖ HMG). (omitted)

  • PDF

Effect of Carcass Electrical Stimulation and Suspension Methods on Meat Quality Characteristics of Longissimus lumborum of Young Buffalo (Bubalus bubalis) Bulls

  • Jaspal, Muhammad Hayat;Ijaz, Muawuz;Akhtar, Muhammad Junaid;Nasir, Jamal;Ullah, Sana;Badar, Iftikhar Hussain;Yar, Muhammad Kashif;Ahmad, Arfan
    • Food Science of Animal Resources
    • /
    • v.41 no.1
    • /
    • pp.34-44
    • /
    • 2021
  • Buffalo animals are slaughtered at their early age and carcasses are chilled rapidly which deteriorates its meat quality and decreases the consumer likeliness of buffalo meat. This study investigated the appropriate methods to prevent the quality deterioration of buffalo meat during chilling. Twenty four 18-mon-old buffalo bulls were slaughtered, electrically stimulated and suspended either by hip or achilles tendon. After 24 h postmortem, meat quality characteristics were recorded. Results showed that electrical stimulation (ES) led to rapid decline of carcass pH compared to non-ES method (p<0.05). Furthermore, electrically stimulated meat presented lower shear force accompanied with the higher CIE L⁎, a⁎, and b⁎ values (p<0.05). Suspension methods only affect the meat shear values and were lowered in hip suspended samples. It can be concluded that ES combined with hip suspension can be adopted to prevent the meat quality deterioration of young buffalo bulls during postmortem storage.