• 제목/요약/키워드: Korean Named Entity Recognition

검색결과 89건 처리시간 0.028초

원거리 감독과 능동 배깅을 이용한 개체명 인식 (Named Entity Recognition Using Distant Supervision and Active Bagging)

  • 이성희;송영길;김학수
    • 정보과학회 논문지
    • /
    • 제43권2호
    • /
    • pp.269-274
    • /
    • 2016
  • 개체명 인식은 문장에서 개체명을 추출하고 추출된 개체명의 범주를 결정하는 작업이다. 기존의 개체명 인식 연구는 주로 지도 학습 기법이 사용되어 왔다. 지도 학습을 위해서는 개체명 범주가 수동으로 부착된 대용량의 학습 말뭉치가 필요하며, 대용량의 학습 말뭉치를 수동으로 구축하는 것은 시간과 인력이 많이 들어가는 일이다. 본 논문에서는 학습 말뭉치 구축비용을 최소화하면서 개체명 인식 성능을 빠르게 향상시키기 위한 준지도 학습 방법을 제안한다. 제안 방법은 초기 학습 말뭉치를 구축하기 위해 원거리 감독법을 사용한다. 그리고 배깅과 능동 학습을 결합한 앙상블 기법의 하나인 능동 배깅을 사용하여 초기 학습 말뭉치에 포함된 노이즈 문장을 효과적으로 제거한다. 실험 결과, 15회의 능동 배깅을 통해 개체명 인식 F1-점수를 67.36%에서 76.42%로 향상시켰다.

한국어 제목 개체명 인식 및 사전 구축: 도서, 영화, 음악, TV프로그램 (Named Entity Recognition and Dictionary Construction for Korean Title: Books, Movies, Music and TV Programs)

  • 박용민;이재성
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권7호
    • /
    • pp.285-292
    • /
    • 2014
  • 개체명 인식은 정보검색 시스템, 질의응답 시스템, 기계번역 시스템 등의 성능을 향상시키기 위하여 사용된다. 개체명 인식은 일반적으로 PLOs(인명, 지명, 기관명)을 대상으로 하며, 주로 미등록어와 고유명사로 이루어져 있기 때문에 고유명사나 미등록어는 중요한 개체명 후보로 쓰일 수 있다. 하지만 도서명, 영화명, 음악명, TV프로그램명과 같은 제목 개체명은 PLO와는 달리 단어부터 문장까지 매우 다양한 형태를 지니고 있어서 개체명 인식이 쉽지 않다. 본 논문에서는 뉴스 기사문을 이용하여 제목 개체명을 빠르게 인식하고 자동으로 사전을 구축하는 방법을 제안한다. 먼저 특수기호로 묶인 어절을 추출하고, 주변 문맥 단어 및 단어 거리를 이용하여 SVM으로 제목 후보들을 추출하였다. 이렇게 추출된 제목 후보들은 상호 정보량을 가중치로 SVM을 이용해 제목 유형을 분류하였다.

한국 전통문화 말뭉치구축 및 Bi-LSTM-CNN-CRF를 활용한 전통문화 개체명 인식 모델 개발 (Constructing for Korean Traditional culture Corpus and Development of Named Entity Recognition Model using Bi-LSTM-CNN-CRFs)

  • 김경민;김규경;조재춘;임희석
    • 한국융합학회논문지
    • /
    • 제9권12호
    • /
    • pp.47-52
    • /
    • 2018
  • 개체명 인식(Named Entity Recognition)시스템은 문서로부터 고유한 의미를 가질 수 있는 인명(PS), 지명(LC), 기관명(OG) 등의 개체명을 추출하고 추출된 개체명의 범주를 결정하는 시스템이다. 최근 딥러닝 방식을 이용한 개체명 인식 연구에서 입력 데이터의 앞, 뒤 방향을 고려한 LSTM 기반의 Bi-LSTM 모델로부터 출력 데이터 간의 전이 확률을 이용한 CRF를 결합한 방식의 Bi-LSTM-CRF가 우수한 성능을 보이고, 문자 및 단어 단위의 효율적인 임베딩 벡터생성에 관한 연구와 CNN, LSTM을 활용한 모델에서도 좋은 성능을 보여주고 있다. 본 연구에서는 한국어 개체명 인식시스템 성능 향상을 위해 자질을 보강한 Bi-LSTM-CNN-CRF 모델에 관해 기술하고 전통문화 말뭉치구축 방식에 대해 제안한다. 그리고 구축한 말뭉치를 한국어 개체명 인식 성능 향상을 위한 자질 보강 모델 Bi-LSTM-CNN-CRF로 학습한 결과에 대해 제안한다.

Structural SVMs 및 Pegasos 알고리즘을 이용한 한국어 개체명 인식 (Named Entity Recognition with Structural SVMs and Pegasos algorithm)

  • 이창기;장명길
    • 인지과학
    • /
    • 제21권4호
    • /
    • pp.655-667
    • /
    • 2010
  • 개체명 인식은 정보 추출의 한 단계로서 정보검색 분야 뿐 아니라 질의응답과 요약 분야에서 매우 유용하게 사용되고 있다. 본 논문에서는 structural Support Vector Machines(structural SVMs) 및 수정된 Pegasos 알고리즘을 이용한 한국어 개체명 인식 시스템에 대하여 기술하고 기존의 Conditional Random Fields(CRFs)를 이용한 시스템과의 성능을 비교한다. 실험결과 structural SVMs과 수정된 Pegasos 알고리즘이 기존의 CRFs 보다 높은 성능을 보였고(신뢰도 99%에서 통계적으로 유의함), structural SVMs과 수정된 Pegasos 알고리즘의 성능은 큰 차이가 없음(통계적으로 유의하지 않음)을 알 수 있었다. 특히 본 논문에서 제안하는 수정된 Pegasos 알고리즘을 이용한 경우 CRFs를 이용한 시스템보다 높은 성능(TV 도메인 F1=85.43, 스포츠 도메인 F1=86.79)을 유지하면서 학습 시간은 4%로 줄일 수 있었다.

  • PDF

효율적 대화 정보 예측을 위한 개체명 인식 연구 (A Study on Named Entity Recognition for Effective Dialogue Information Prediction)

  • 고명현;김학동;임헌영;이유림;지민규;김원일
    • 방송공학회논문지
    • /
    • 제24권1호
    • /
    • pp.58-66
    • /
    • 2019
  • 대화 문장 내 고유명사와 같은 개체명에 대한 인식 연구는 효율적 대화 정보 예측을 위한 가장 기본적이며 중요한 연구 분야이다. 목적 지향 대화 시스템에서 가장 주요한 부분은 대화 내 객체가 어떤 속성을 가지고 있느냐 하는 것을 인지하는 것이다. 개체명 인식모델은 대화 문장에 대하여 전처리, 단어 임베딩, 예측 단계를 통해 개체명 인식을 진행한다. 본 연구는 효율적인 대화 정보 예측을 위해 전처리 단계에서 사용자 정의 사전을 이용하고 단어 임베딩 단계에서 최적의 파라미터를 발견하는 것을 목표로 한다. 그리고 설계한 개체명 인식 모델을 실험하기 위해 생활 화학제품 분야를 선택하고 관련 도메인 내 목적 지향 대화 시스템에서 적용 할 수 있는 개체명 인식 모델을 구축하였다.

HMM에 기반한 한국어 개체명 인식 (HMM-based Korean Named Entity Recognition)

  • 황이규;윤보현
    • 정보처리학회논문지B
    • /
    • 제10B권2호
    • /
    • pp.229-236
    • /
    • 2003
  • 개체명 인식은 질의응답 시스템이나 정보 추출 시스템에서 필수 불가결한 과정이다. 이 논문에서는 HMM 기반의 복합 명사 구성 원리를 이용한 한국어 개체명 인식 방법에 대해 설명한다. 한국어에서 많은 개체명들이 하나 이상의 단어로 구성되어 있다. 또한, 하나의 개체명을 구성하는 단어들 사이와 개체명과 개체명 주위의 단어 사이에도 문맥적 관계를 가지고 있다. 본 논문에서는 단어들을 개체명 독립 단어, 개체명 구성 단어, 개체명 인접 단어로 분류하고, 개체명 관련 단어 유형과 품사를 기반으로 HMM을 학습하였다. 본 논문에서 제안하는 개체명 인식 시스템은 가변길이의 개체명을 인식하기 위해 트라이그램 모델을 사용하였다. 트라이그램 모델을 이용한 HMM은 데이터 부족 문제를 가지고 있으며, 이를 해결하기 위해 다단계 백-오프를 이용하였다. 경제 분야 신문기사를 이용한 실험 결과 F-measure 97.6%의 결과를 얻었다.

Towards Effective Entity Extraction of Scientific Documents using Discriminative Linguistic Features

  • Hwang, Sangwon;Hong, Jang-Eui;Nam, Young-Kwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권3호
    • /
    • pp.1639-1658
    • /
    • 2019
  • Named entity recognition (NER) is an important technique for improving the performance of data mining and big data analytics. In previous studies, NER systems have been employed to identify named-entities using statistical methods based on prior information or linguistic features; however, such methods are limited in that they are unable to recognize unregistered or unlearned objects. In this paper, a method is proposed to extract objects, such as technologies, theories, or person names, by analyzing the collocation relationship between certain words that simultaneously appear around specific words in the abstracts of academic journals. The method is executed as follows. First, the data is preprocessed using data cleaning and sentence detection to separate the text into single sentences. Then, part-of-speech (POS) tagging is applied to the individual sentences. After this, the appearance and collocation information of the other POS tags is analyzed, excluding the entity candidates, such as nouns. Finally, an entity recognition model is created based on analyzing and classifying the information in the sentences.

자질 보강과 양방향 LSTM-CNN-CRF 기반의 한국어 개체명 인식 모델 (Bi-directional LSTM-CNN-CRF for Korean Named Entity Recognition System with Feature Augmentation)

  • 이동엽;유원희;임희석
    • 한국융합학회논문지
    • /
    • 제8권12호
    • /
    • pp.55-62
    • /
    • 2017
  • 개체명 인식(Named Entity Recognition) 시스템은 문서에서 인명(PS), 지명(LC), 단체명(OG)과 같은 개체명을 가지는 단어나 어구를 해당 개체명으로 인식하는 시스템이다. 개체명 인식을 하기위한 전통적인 연구방법으로는 hand-craft된 자질(feature)을 기반으로 모델을 학습하는 통계 기반의 모델이 있다. 최근에는 딥러닝 기반의 RNN(Recurrent Neural Networks), LSTM(Long-short Term Memory)과 같은 모델을 이용하여 문장을 표현하는 자질을 구성하고 이를 개체명 인식과 같이 순서 라벨링(sequence labeling) 문제 해결에 이용한 연구가 제안되었다. 본 연구에서는 한국어 개체명 인식 시스템의 성능 향상을 위해, end-to-end learning 방식이 가능한 딥러닝 기반의 모델에 미리 구축되어 있는 hand-craft된 자질이나 품사 태깅 정보 및 기구축 사전(lexicon) 정보를 추가로 활용하여 자질을 보강(augmentation)하는 방법을 제안한다. 실험 결과 본 논문에서 제안하는 방법에 따라 자질을 보강한 한국어 개체명 인식 시스템의 성능 향상을 확인하였다. 또한 본 연구의 결과를 한국어 자연어처리(NLP) 및 개체명 인식 시스템을 연구하는 연구자들과의 향후 협업 연구를 위해 github를 통해 공개하였다.

개인정보 비식별화를 위한 개체명 유형 재정의와 학습데이터 생성 방법 (Re-defining Named Entity Type for Personal Information De-identification and A Generation method of Training Data)

  • 최재훈;조상현;김민호;권혁철
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.206-208
    • /
    • 2022
  • 최근 빅데이터 산업이 큰 폭으로 발전하는 만큼 개인정보 유출로 인한 사생활 침해 문제의 관심도 높아졌다. 자연어 처리 분야에서는 이를 개체명 인식을 통해 자동화하려는 시도들이 있었다. 본 논문에서는 한국어 위키피디아 문서의 본문에서 비식별화 정보를 지닌 문장을 식별해 반자동으로 개체명 인식 데이터를 구축한다. 이는 범용적인 개체명 인식 데이터에 반해 비식별화 대상이 아닌 정보에 대해 학습되는 비용을 줄일 수 있다. 또한, 비식별화 정보를 분류하기 위해 규칙 및 통계 기반의 추가적인 시스템을 최소화할 수 있는 장점을 가진다. 본 논문에서 제안하는 개체명 인식 데이터는 총 12개의 범주로 분류하며 의료 기록, 가족 관계와 같은 비식별화 대상이 되는 정보를 포함한다. 생성된 데이터셋을 이용한 실험에서 KoELECTRA는 0.87796, RoBERTa는 0.88575의 성능을 보였다.

  • PDF

음성 자료에 대한 규칙 기반 Named Entity 인식 (Rule-based Named Entity (NE) Recognition from Speech)

  • 김지환
    • 대한음성학회지:말소리
    • /
    • 제58호
    • /
    • pp.45-66
    • /
    • 2006
  • In this paper, a rule-based (transformation-based) NE recognition system is proposed. This system uses Brill's rule inference approach. The performance of the rule-based system and IdentiFinder, one of most successful stochastic systems, are compared. In the baseline case (no punctuation and no capitalisation), both systems show almost equal performance. They also have similar performance in the case of additional information such as punctuation, capitalisation and name lists. The performances of both systems degrade linearly with the number of speech recognition errors, and their rates of degradation are almost equal. These results show that automatic rule inference is a viable alternative to the HMM-based approach to NE recognition, but it retains the advantages of a rule-based approach.

  • PDF