• Title/Summary/Keyword: Korean Lunar Exploration

Search Result 113, Processing Time 0.025 seconds

Practical Algorithms on Lunar Reference Frame Transformations for Korea Pathfinder Lunar Orbiter Flight Operation

  • Song, Young-Joo;Lee, Donghun;Kim, Young-Rok;Bae, Jonghee;Park, Jae-ik;Hong, SeungBum;Kim, Dae-Kwan;Lee, Sang-Ryool
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.185-192
    • /
    • 2021
  • This technical paper deals the practical transformation algorithms between several lunar reference frames which will be used for Korea pathfinder lunar orbiter (KPLO) flight operation. Despite of various lunar reference frame definitions already exist, use of a common transformation algorithm while establishing lunar reference frame is very important for all members related to KPLO mission. This is because use of slight different parameters during frame transformation may result significant misleading while reprocessing data based on KPLO flight dynamics. Therefore, details of practical transformation algorithms for the KPLO mission specific lunar reference frames is presented with step by step implementation procedures. Examples of transformation results are also presented to support KPLO flight dynamics data user community which is expected to give practical guidelines while post processing the data as their needs. With this technical paper, common understandings of reference frames that will be used throughout not only the KPLO flight operation but also science data reprocessing can be established. It is expected to eliminate, or at least minimize, unnecessary confusion among all of the KPLO mission members including: Korea Aerospace Research Institute (KARI), National Aeronautics and Space Administration (NASA) as well as other organizations participating in KPLO payload development and operation, or further lunar science community world-wide who are interested in KPLO science data post processing.

THE SELENE MISSION AND JAPANESE LUNAR EXPLORATION SCENARIO

  • NODA HIROTOMO;HANADA HIDEO;KAWANO NOBUYUKI;IWATA TAKAHIRO
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.311-314
    • /
    • 2005
  • We report the current status of Japanese lunar exploration SELENE (SELenological and ENgineering Explorer). As of the end of 2004, scientific instruments onboard the Main Orbiter are under final checkout before they are provided to the proto-flight-model (PFM) integration test. Also, we present the future perspectives of the lunar based instruments and facilities. 'In-situ Lunar Orientation Mea-surement (ILOM)' experiment measures the lunar rotation with high accuracy by tracking stars on the Moon with a small photo-zenith-tube type optical telescope. A basic idea of a radio telescope array of very low frequency range on the lunar far-side is also mentioned.

Global Trends of In-Situ Resource Utilization (우주 현지자원활용 글로벌 동향 )

  • Dong Young Rew
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.199-212
    • /
    • 2023
  • In contrast to the short-term nature of lunar missions in the past, lunar missions in new space era aim to extend the presence on the lunar surface and to use this capability for the Mars exploration. In order to realize extended human presence on the Moon, production and use of consumables and fuels required for the habitation and transportation using in-situ resources is an important prerequisite. The Global Exploration Roadmap presented by the International Space Exploration Coordination Group (ISECG), which reflects the space exploration plans of participating countries, shows the phases of progress from lunar surface exploration to Mars exploration and relates in-situ resource utilization (ISRU) capabilities to each phase. Based on the ISRU Gap Assessment Report from the ISECG, ISRU technology is categorized into in-situ propellant and consumable production, in-situ construction, in-space manufacturing, and related areas such as storage and utilization of products, power systems required for resource utilization. Among the lunar resources, leading countries have prioritized the utilization of ice water existing in the permanent shadow region near the lunar poles and the extraction of oxygen from the regolith, and are preparing to investigate the distribution of resources and ice water near the lunar south pole through unmanned landing missions. Resource utilization technologies such as producing hydrogen and oxygen from water by hydroelectrolysis and extracting oxygen from the lunar regolith are being developed and tested in relevant lunar surface analogue environments. It is also observed that each government emphasizes the use and development of the private sector capabilities for sustainable lunar surface exploration by purchasing lunar landing services and providing opportunities to participate in resource exploration and material extraction.

Lessons Learned from Korea Pathfinder Lunar Orbiter Flight Dynamics Operations: NASA Deep Space Network Interfaces and Support Levels

  • Young-Joo Song;SeungBum Hong;Dong-Gyu Kim;Jun Bang;Jonghee Bae
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.79-88
    • /
    • 2023
  • On Aug. 4, 2022, at 23:08:48 (UTC), the Korea Pathfinder Lunar Orbiter (KPLO), also known as Danuri, was launched using a SpaceX Falcon 9 launch vehicle. Currently, KPLO is successfully conducting its science mission around the Moon. The National Aeronautics and Space Administration (NASA)'s Deep Space Network (DSN) was utilized for the successful flight operation of KPLO. A great deal of joint effort was made between the Korea Aerospace Research Institute (KARI) and NASA DSN team since the beginning of KPLO ground system design for the success of the mission. The efficient utilization and management of NASA DSN in deep space exploration are critical not only for the spacecraft's telemetry and command but also for tracking the flight dynamics (FD) operation. In this work, the top-level DSN interface architecture, detailed workflows, DSN support levels, and practical lessons learned from the joint team's efforts are presented for KPLO's successful FD operation. Due to the significant joint team's efforts, KPLO is currently performing its mission smoothly in the lunar mission orbit. Through KPLO cooperative operation experience with DSN, a more reliable and efficient partnership is expected not only for Korea's own deep space exploration mission but also for the KARI-NASA DSN joint support on other deep space missions in the future.

Design and Performance Analysis of DSP Prototype for High Data Rate Transmission of Lunar Orbiter (달 탐사선의 데이터 고속 전송을 위한 DSP 프로토타입 설계 및 성능 분석)

  • Jang, Yeon-Soo;Kim, Sang-Goo;Cho, Kyong-Kuk;Yoon, Dong-Weon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.63-68
    • /
    • 2011
  • Many countries all over the world have been doing lunar exploration projects. Korea has also been doing basic research on lunar exploration. The development of communication systems for lunar exploration projects is one of the most important aspects of performing a successful lunar mission. In this paper, we design a DSP (Digital Signal Processor) prototype based on the requirement analysis of a communication link for lunar exploration and implement its core module considering the international standards for deep space communications to perform a basic research on baseband processor development. It is verified by comparing the bit error rate of the DSP prototype with that of a computer simulation.

Korea Pathfinder Lunar Orbiter (KPLO) Operation: From Design to Initial Results

  • Moon-Jin Jeon;Young-Ho Cho;Eunhyeuk Kim;Dong-Gyu Kim;Young-Joo Song;SeungBum Hong;Jonghee Bae;Jun Bang;Jo Ryeong Yim;Dae-Kwan Kim
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.43-60
    • /
    • 2024
  • Korea Pathfinder Lunar Orbiter (KPLO) is South Korea's first space exploration mission, developed by the Korea Aerospace Research Institute. It aims to develop technologies for lunar exploration, explore lunar science, and test new technologies. KPLO was launched on August 5, 2022, by a Falcon-9 launch vehicle from cape canaveral space force station (CCSFS) in the United States and placed on a ballistic lunar transfer (BLT) trajectory. A total of four trajectory correction maneuvers were performed during the approximately 4.5-month trans-lunar cruise phase to reach the Moon. Starting with the first lunar orbit insertion (LOI) maneuver on December 16, the spacecraft performed a total of three maneuvers before arriving at the lunar mission orbit, at an altitude of 100 kilometers, on December 27, 2022. After entering lunar orbit, the commissioning phase validated the operation of the mission mode, in which the payload is oriented toward the center of the Moon. After completing about one month of commissioning, normal mission operations began, and each payload successfully performed its planned mission. All of the spacecraft operations that KPLO performs from launch to normal operations were designed through the system operations design process. This includes operations that are automatically initiated post-separation from the launch vehicle, as well as those in lunar transfer orbit and lunar mission orbit. Key operational procedures such as the spacecraft's initial checkout, trajectory correction maneuvers, LOI, and commissioning were developed during the early operation preparation phase. These procedures were executed effectively during both the early and normal operation phases. The successful execution of these operations confirms the robust verification of the system operation.

Unmanned Lunar Exploration Failure Case Analysis (해외 무인 달 탐사 실패 사례 분석)

  • Yang, Jeong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.233-242
    • /
    • 2020
  • The history of mankind's lunar exploration began in 1958 with the United States of America "Pioneer 0" mission. In 1950s~1970s, the United States of America and Union of Soviet Socialist Republics carried out missions and experienced numerous failures to explore the moon. Since the 1990s, Japan, Europe, China and other Advanced country in Space technology have started to explore the moon and in 2016, Korea began to develop the lunar orbiter for lunar exploration. This paper analyzed the failure cases and causes of the lunar exploration in the USA and the USSR in the 1950s~1970s according to the mission purpose. Examples of mission delays, cancel, and failures that occurred during lunar exploration in post-1990s were presented. Through the investigation and analysis, this paper is intended to serve as a reference of the lunar exploration mission that Korea is working on or will be performing in the future.

ShadowCam Instrument and Investigation Overview

  • Mark Southwick Robinson;Scott Michael Brylow;Michael Alan Caplinger;Lynn Marie Carter;Matthew John Clark;Brett Wilcox Denevi;Nicholas Michael Estes;David Carl Humm;Prasun Mahanti;Douglas Arden Peckham;Michael Andrew Ravine;Jacob Andrieu Schaffner;Emerson Jacob Speyerer;Robert Vernon Wagner
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.149-171
    • /
    • 2023
  • ShadowCam is a National Aeronautics and Space Administration Advanced Exploration Systems funded instrument hosted onboard the Korea Aerospace Research Institute (KARI) Korea Pathfinder Lunar Orbiter (KPLO) satellite. By collecting high-resolution images of permanently shadowed regions (PSRs), ShadowCam will provide critical information about the distribution and accessibility of water ice and other volatiles at spatial scales (1.7 m/pixel) required to mitigate risks and maximize the results of future exploration activities. The PSRs never see direct sunlight and are illuminated only by light reflected from nearby topographic highs. Since secondary illumination is very dim, ShadowCam was designed to be over 200 times more sensitive than previous imagers like the Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC). ShadowCam images thus allow for unprecedented views into the shadows, but saturate while imaging sunlit terrain.

Design and Performance Analysis of Downlink in Space Communications System for Lunar Exploration

  • Lee, Woo-Ju;Cho, Kyong-Kuk;Yoon, Dong-Weon;Hyun, Kwang-Min
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.1
    • /
    • pp.11-20
    • /
    • 2010
  • This paper designs a data link between a Lunar Orbiter (LO) and an Earth Station (ES), and analyzes the downlink performance of a space communications system for lunar exploration, conforming to the recommendations by the Consultative Committee for Space Data Systems (CCSDS). The results provided in the paper can be useful references for the design of reliable communication link for the Korean lunar exploration in the near future.

A Case Study on LRO Flight Software for Korean Lunar Exploration Program (한국형 달 탐사 프로그램을 위한 LRO 비행 소프트웨어 사례 분석)

  • Kim, Changkyoon;Kwon, Jae-Wook;Moon, Sang-Man;Kim, In-Kyu;Min, Seung Yong
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.73-80
    • /
    • 2015
  • For Korean first lunar exploration program, KARI(Korea Aerospace Research Institute) has been researching in various fields and investigating cases of abroad lunar exploration spacecrafts. In the field of the flight software, KARI has been analysing some cases such as NASA LRO, and this paper describes the result of the case study on LRO flight software.