• Title/Summary/Keyword: Korean Film Contents (K-Film)

Search Result 426, Processing Time 0.026 seconds

Content and Availability of Micronutrients in Manure-based Composts (퇴비의 미량원소 함량과 작물에 대한 유효도)

  • Chung, Jong-Bae;Choi, Hee-Youl
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.4
    • /
    • pp.230-236
    • /
    • 2006
  • The objective of this study was to evaluate the effects of the application of compost on the availability of micronutrients in lettuce. Micronutrient contents of manure-based composts containing various other source materials were investigated. Total and extractable contents of micronutrients in the composts were analysed. Pots containing soil of relatively low micronutrient levels were treated with 1,000 and $2,000kg\;10a^{-1}$ of compost and used to grow lettuce plants under greenhouse conditions. Fresh and dry weights of lettuce and micronutrient uptake were determined after harvest. Manure-based composts of various other source materials contained very different amounts of total and extractable micronutrients. Total contents of B, Cu, Fe, Mn, Mo and Zn were in the range of 26-42, 27-160, 4,300-9,500, 290-790, 0-0.5 and $140-420mg\;kg^{-1}$, respectively. The contents of 0.1 N HCl extractable B, Cu, Fe, Mn and Zn were 23-32, 1.3-2.6, <1, 7-32 and 0.5-5% of total content, respectively. Contents of micronutrients extractable in DTPA solution were generally higher than those extractable in 0.1 N HCl. It was found that the fresh and dry matter productions of the plants were significantly higher in the compost treatment of $2,000kg\;10a^{-1}$. Lettuce grown in soil treated 1,000 and $2,000kg\;10a^{-1}$ of manure-based compost contained higher levels of B, Cu, Mo and Zn than lettuce grown without compost application. However, contents of Fe and Mn in lettuce were relatively lower in the compost treatments. In the compost treatments the proportions of micronutrients in soil and plant were all in the optimum ranges and below the toxicity levels. The results obtained allow us to establish that commercial composts could be used as soil amendment for plastic film house crop production with sufficient supply of micronutrients.

Weathering and Termite Resistance of Woodflour-Recycled Polypropylene Composites in Tropical Region

  • Febrianto, Fauzi;Sulaeman, Rudianda;Karina, Myrtha;Ashaari, Zaidon;Hadi, Yusuf Sudo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.88-97
    • /
    • 2006
  • Wood flour (WF)-recycled polypropylene (RPP) composites composed of 50% WF of Eucalyptus deglupta Blume species, 50% RPP, various contents of maleic anhydride (MAH) modifier (0; 1; 2; 5; 5; 7.5; and lo%), and 15% dicumyl peroxide (DCP) initiator (based on MAH weight) were subjected to weather for 1 year and subterranean termite (Coptotermes cuwignathus HOLMGREN) and dry wood termite (Cryptotermes cynocephalus LIGHT) for 3 and 4 weeks, respectively. WF-RPP composites with 2.5% MA modifier had tensile strength, breaking elongation and Young's modulus about 2.2, 2.3, and 1.2 times, respectively higher compared to MAH-free composites. The WF-RPP composites with or without MAH modifier had 5.5 times higher resistance to weather compared to RPP film alone. The color of the WF-RPP composites with or without MAH modifier became lighter after exposures to the weather. The WF-RPP composites with or without MAH modifier are resistant to subterranean termite Coptotermes curvignathus HOLMGREN and dry wood termite Cryptotermecs cynocephalus LIGHT under the experimental condition adopted.

Characterization of Silica/EVOH Hybrid Coating Materials Prepared by Sol-Gel Method

  • Kim, Seong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.288-296
    • /
    • 2009
  • In this study, the silica-based hybrid material with high barrier property was prepared by incorporating ethylene-vinyl alcohol (EVOH) copolymer, which has been utilized as packaging materials due to its superior gas permeation resistance, during sol-gel process. In preparation of this EVOH/$SiO_2$ hybrid coating materials, the (3-glycidoxy-propyl)-trimethoxysilane (GPTMS) as a silane coupling agent was employed to promote interfacial adhesion between organic and inorganic phases. As confirmed from FT-IR analysis, the physical interaction between two phases was improved due to the increased hydrogen bonding, resulting in homogeneous microstructure with dispersion of nano-sized silica particles. However, depending on the range of content of added silane coupling agent (GPTMS), micro-phase separated microstructure in the hybrid could be observed due to insufficient interfacial attraction or possibility of polymerization reaction of epoxide ring in GPTMS. The oxygen barrier property of the mono-layer coated BOPP (biaxially oriented polypropylene) film was examined for the hybrids containing various GPTMS contents. Consequently, it is revealed that GPTMS should be used in an optimum level of content to produce the high barrier EVOH/$SiO_2$ hybrid material with an improved optical transparency and homogeneous phase morphology.

Effect of Silicon on the Corrosion Characteristics of Zirconium (Zr의 부식특성에 미치는 Si의 영향)

  • Jeon, Chi-Jung;Kim, Hee-Suk;Kim, Yong-Deok;Hong, Hyun-Seon;Kim, Seon-Jin;Lee, Kyung-Sub
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.513-519
    • /
    • 1998
  • Zr-Si binary alloys containing 0.01 to O.lwt.%Si were prepared to investigate the effect of Si on the corrosion behavior of Zr. Corrosion test was performed in pure water at 36$0^{\circ}C$ under a pressure of 2660psi for 100days. The alloys containing 0.01 wt. % and 0.05wt. %Si had the black and uniform oxide film and didn't show the transition of corrosion rate. However. the alloys containing O.lwt.%Si had white oxide film and showed the trasition of corrosion rate at 70 days corrosion test. The weight gain increased with the increasing Si content from 0.01 to 0.1 wt.%. The variation of Si contents had no effect on changing the oxide structure but had significant effect on the electrical resistivity of oxide. The electrical resistivity decreased with increasing Si content. The fraction of precipitates in the Zr-Si binary alloys. identified as tetragonal $Zr_{3}$Si increased with increasing Si content. The increase of the volume fraction of precipitates is thought to be responsible for the increase of weight gain due to short circuit effect of precipitate.

  • PDF

Salts Reduction Effect of Natural Zeolite in Plastic Film House Soil (천연 Zeolite를 이용한 시설재배지 토양의 염류제거 효과)

  • Wee, Chi-Do;Li, Jun-Xi;Kim, Hong-Lim;Sohn, Bo-Kyoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.552-557
    • /
    • 2010
  • This study was performed to investigate the effect of zeolite on the reduction of soil EC level in the plastic film house. The EC level of experimental soil was 5.0 dS $m^{-1}$ and the zeolite was applied to the soil at seven levels (0.5, 1, 2, 5, 10, 15, 20%) with three replications. The reduction degree of soil EC level showed positive tendency to the mixing ratio of zeolite. Especially, the EC level reduced rapidly from 5.01 to 2.8 dS $m^{-1}$ in the plot where zeolite was mixed by 20% 10 days after treatment. The pH level of soil was in positive relation to the mixing ratio of zeolite, contrary to the negative relation to the concentration level of water soluble Ca, Mg and phosphorus (P). The water contents of soil mixed with 15% and 20% zeolite were 14% and 17.3% respectively but it was 12.7% for control soil. Therefore, we expect natural zeolite to salts reduction agent for exchangeable cation and phosphate which is difficult to reduce by watering and other methods.

Shelf-life Prediction of Brown Rice in Laminated Pouch by n-Hexanal and Fatty Acids During Storage (현미의 포장 저장 중 지방산 조성 및 헥사날의 변화에 의한 저장성 예측)

  • Han, Jae-Gyoung;Kim, Kwan;Kang, Kil-Jin;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.897-903
    • /
    • 1996
  • The shelf-life of brown rice in laminated film (4-layered) pouch was analyzed at various temperatures $(4^{\circ}C,\;20^{\circ}C,\;30^{\circ}C\;and\;$40^{\circ}C)$ using n-hexanal content and fatty acid composition as a measure of deterioration. The far acidity of brown rice during storage showed sensitive responses at the storage temperature, resulting in the activation energy of 14.07 kcal/mole and $Q_{10}$ value of 2.22. The fatty acids in the brown rice were myristic, palmitic, stearic, oleic, linoleic and linolenic acid, and oleic acid was the moot predominant. The higher the temperature and the longer the storage periods, the higher the fatty acid contents except linoleic acid. The n-hexanal activation energy was 18.36 kcal/mole, and $Q_{10}$ value was 2.84. Based on the storage conditions, the shelf-life of brown rice was 80 days by n-hexanal and 60 days by fat acidity at room temperature $(21^{\circ}C)$.

  • PDF

Formation of MOCVD TiN from a New Precursor (새로운 증착원으로 형성된 MOCVD TiN에 관한 연구)

  • Choe, Jeong-Hwan;Lee, Jae-Gap;Kim, Ji-Yong;Lee, Eun-Gu;Hong, Hae-Nam;Sin, Hyeon-Guk
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.244-250
    • /
    • 1999
  • MOCVD TiN films were prepared from a new TiN precursor, tetrakis(etylmethylamino)titanium (TEMAT) and ammonia. Deposition of TiN films from a single precursor, TEMA T yielded the growth rates of $70 to 1050\AA$/min, depending on the deposition temperature. Furthermore, the excellent bottom coverage of -90% over $0.35\mu\textrm{m}$ contacts was obtained at $275^{\circ}C$. The addition of ammonia to TEMA T lowered the resistivity of as- deposited TiN film to ~ $800\mu\omega-cm$ from $3500~6000\mu\omega-cm$ and improved the stability of TiN film in air. Examination of the films by Auger electron spectroscopy(AES) showed that the oxygen and carbon contents decreased with the addition of ammonia. However, increasing ammonia flow rate decreased the bottom coverage of TiN films over $0.5\mu\textrm{m}$ contacts, probably due to the high sticking coefficient of intermediate species produced from the gas phase reaction of TEMA T and ammonia. Based on the byproduct gases detected by the quadrupole mass spectrometer (QMS), the transammination reaction was proposed to be responsible for TiN deposition. In addition, XPS analysis revealed that the carbon in the films made from TEMA T and ammonia was metallic carbon, suggesting that $\beta$-hydrogen activation process occurs competitively with the transammination reaction.

  • PDF

Heavy Metal Contents in Upland Soils and Crops of Korea (우리나라 밭 토양 및 작물의 중금속함량)

  • Jung, Goo-Bok;Kim, Ho-Chung;Jung, Ki-Yeol;Jung, Beung-Kan;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.3
    • /
    • pp.225-232
    • /
    • 1998
  • In order to monitor the degree of heavy metal distribution in upland cultivations in Korea, both the cultivated soils and crops were collected from the 854 and 140 sites, respectively. The contents of cadmium (Cd), copper(Cu), lead(Pb), and zinc(Zn) in each sample were measured by Inductively Coupled Plasma(ICP) technique after 1N-HCl extraction. The content of Arsenic(As) was also measured with the same technique after 1N-HCl extraction. The average contents of heavy metal in surface soils(0~15 cm depth) were $0.135mg\;kg^{-1}$ for Cd, $2.77mg\;kg^{-1}$ for Cu, $3.47mg\;kg^{-1}$ for Pb, $10.7mg\;kg^{-1}$ for Zn, and $0.57mg\;kg^{-1}$ for As. Heavy metal contents of soil were similar to those values measured for upland soils in 1989, lower than soils under plastic film house in 1996. However, these contents were lower than "Countermeasure values for soil contamination"(Cd: 4, Cu: 125, Pb: 300, and As: $15mg\;kg^{-1}$ in soil) describled in Soil Environmental Conservation Act in Korea(1996). The contents of heavy metal in fresh vegetable, and root and tuber crops ranged $0.005{\sim}0.019mg\;kg^{-1}$ for Cd, $0.20{\sim}1.03mg\;kg^{-1}$ for Cu, $0.042{\sim}0.104mg\;kg^{-1}$ for Pb, and $2.0{\sim}4.0mg\;kg^{-1}$ for Zn, respectively.

  • PDF

Changes of Chemical Properties and Correlation under No-tillage Silt Loam Soil with Ridge Cultivation of Plastics Film Greenhouse Condition

  • Yang, Seung-Koo;Shin, Gil-Ho;Kim, Hee-Kon;Kim, Hyun-Woo;Choi, Kyung-Ju;Jung, Woo-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.3
    • /
    • pp.170-179
    • /
    • 2015
  • This study was carried out to investigate the sustainable agriculture of no-tillage technique to minimize tillage problems under rain interception green house condition including recycling of the ridge and the furrow for following cultivation in Korea. Chemical properties in soils were investigated at 3-years after cultivation at conventional tillage [CT; 2-years no-tillage (2009-2010) and 1-year (2011) tillage] and no-tillage [NT; 2009-2011] field. Soil pH maintained between 5.8 and 6.0 irrespectively tillage and no-tillage. Salinity (EC), contents of total nitrogen (TN), cation exchange capacity (CEC), and exchangeable cations (K, Ca and Mg) in soil were remarkably higher in CT than in NT treatment. Salinity (EC), contents of OM, TN, CEC, and exchangeable cations in top soil and subsoil indicated higher deviation in CT than NT treatment. Organic matters and inorganic matters in soil were positive (+) correlation. Suppression of pepper growth and increase of yield were observed in no-tillage soil compared with tillage soil. These results indicated that no-tillage technique in crop culture could play an important role with respect to chemical properties in silt loam soil.

Preparation of crosslinkable imide oligomers and Applications in Polyether Imides for Dual-ovenable Packaging (가교형 이미드 올리고머 제조 및 듀얼 오브너블 용기(Dual-Ovenable Packaging) 용 폴리에테르이미드에 대한 적용 연구)

  • Seo, Jongchul;Park, Su-Il;Choi, Seunghyuk;Jang, Wongbong;Han, Haksoo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.45-52
    • /
    • 2010
  • Two different imide oligomers(6FDA-ODA/APA and 6FDA-MDA/MA) having crosslinkable end groups were prepared by using a solution imidization method and their properties were investigated. Also, semi-interpenetrating polymer networks(semi-IPN) were prepared using the blends of imide oligomers with polyetherimide $Ultem^{(R)}$, which is used in dual-ovenable packaging materials. The characteristic properties of semi-IPN films were interpreted by using TGA, Thin Film Diffusion Analyzer, and WAXD. Molecular weights of imide oligomers were successfully controlled utilizing 2-aminophenylacetylene(APA) and maleic anhydride(MA) as an endcapping agent. Exotherm reactions by crosslinking appeared and the amount of exthotherm heat was linearly increased as the content of imide oligomers was increased. For semi-IPNs of $Ultem^{(R)}$ and imide oligomers, 5% and 10% weight loss temperatures increased as the contents of imide oligomers were increased. Diffusion coefficient and water uptake of semi-IPNs decreased as the content of imide oligomers was increased, which might be resulted from hydrophobic fluorine group and high packing density. It was concluded that relatively low thermal stability and hydrolytic stability of polyetherimide $Ultem^{(R)}$ were improved by incorporating new developed imide oligomers.