• 제목/요약/키워드: Korean Ceramics

검색결과 4,722건 처리시간 0.025초

$Si_3N_4-hBN$ 머시너블 세라믹의 R-curve 거동분석과 가공성 평가 (Evaluation of R-curve Behavior Analysis and Machinability of $Si_3N_4-hBN$ Machinable Ceramics)

  • 장성민;조명우;조원승;이재형
    • 한국정밀공학회지
    • /
    • 제21권1호
    • /
    • pp.61-70
    • /
    • 2004
  • Generally, ceramics are very difficult-to-cut materials because of its high strength and hardness. The machining process of ceramics can be characterized by cracking and brittle fracture. In the machining of ceramics, edge chipping and crack propagation are the principal reasons to cause surface integrity deterioration. Such phenomenon can cause not only poor dimensional and geometric accuracy, but also possible failure of the ceramic parts. Ceramics can be machined with traditional method such as grinding and polishing. However, such processes are generally cost-expensive and have low material removal rate. Thus, in this paper, to overcome these problems. BN powder, which gives good cutting property, is added for the fabrication of machinable ceramics by volume of 5,10,15,20,25 and 30%. And, mechanical properties, R-curve behavior and machining tests are carried out to evaluate the machining properties of the manufactured machinable ceramics.

마게마이트(${\gamma}-Fe_2O_3$) 소결체의 미세구조와 LPG 감지특성 (Microstructures and LPG Sensing Properties of Maghemite(${\gamma}-Fe_2O_3$) Ceramics)

  • 신형섭;오재희
    • 한국세라믹학회지
    • /
    • 제29권6호
    • /
    • pp.441-450
    • /
    • 1992
  • The microstructur and LPG sensing properties of maghemite (${\gamma}-Fe_2O_3$) ceramics have been studied. The acicular and fine spherical shaped iron oxide particles were sintered at below $900^{\circ}C$. The maghemite ceramics were prepared by reduction-oxidation of sintered iron oxide. With the microstructure of acicular and/or fine grains, the maghemite ceramics have good LPG sensing properties. Increased sintering temperature deteriorates the LPG sensitivity of maghemite ceramics due to the grain growth. The maghemite ceramics prepared from the mixed iron oxide, of a large amount of acicular particles and a small amount of spherical ones, have a lower LPG sensitivity than that of the acicular iron oxide ceramics. But, they seem to be of higher mechanical strength. The optimum working temperature for LPG sensing of the maghemite ceramics was found to be $300~350^{\circ}C$.

  • PDF

화인세라믹스의 고능률적 평면 연삭가공을 위한 실험적 연구(I) (Stduy on the Surface Grinding Machining of Fine-ceramics with high efficiency)

  • 강재훈;이재경
    • 한국정밀공학회지
    • /
    • 제7권4호
    • /
    • pp.40-54
    • /
    • 1990
  • Recently, Fine Ceramics have been concerned significantly with some excellent properties and many functions as new industrial materials to the industry at alrge. For the manufacture of Fine Ceramics, sintering is essential process. Thus the most of a Fine Ceramics used for precision parts are in need of machining proces. It is, however, very difficult to manufacture the Advanced Ceramics with high efficiency because they have not only high strength and brittl- eness but also high hardness. In present research, experiments are carried out to obtain the basic knowledge of Fine Ceramics grinding with high efficiency. Representative advanced ceramics, such as A1/sub 2/0/sub 3/, Z/sub r/O/sub 2/SiC snd Si/sub 2/N/sub 4/are ground with diamond wheels using conventional surface grinding machine. This research is carried out for the purpose of saving machining technology required for manufactiring Fine Ceramics parts

  • PDF

저순도 알루미나 세라믹 가소결재의 피삭성

  • 이재우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.33-38
    • /
    • 1995
  • In this study, unsistered, pre-sintered and sintered low purity alumina ceramics were machined with various tools to clarify the machniability, the optimum tool materials and the optimum tool materials and the optimum cutting conditions. The maon conclusions obtained were as follows. (1) Machined withalloy steel tool, the machinabilty of te pre-sintered ceramics becomes better with the decrease of pre-sintering temperature, but that of unsintered ceramics(white body) was extremely poor. (2) In the case of carbide tool K01, the tool life in machining white body was the longest, and the machinabilty of pre-sintered ceramics becomes poorer with the increase of the pre-sintering temperature. (3) In the case of ceramic tool, the 10000-1100 .deg. C pre-sintered ceramics showed te best machinability within a certain cutting speed range. So far as dry machining, the above combination and conditions showed the highest productivity. (4) When the pre-sintered ceramics were wet machined withsintered diamond tool, the tool life becomes extremelylong, and higher cutting speed can be can be used than in the case offull-sintered ceramics. The productivity of wet cutting is much higher than that ofdry cutting.

  • PDF

인산염계 다공질 결정화 유리에 관한 연구 (A Study on the Porous Glass-Ceramics in the Phosphate System)

  • 박용완;현부성;김태호
    • 한국세라믹학회지
    • /
    • 제32권7호
    • /
    • pp.858-864
    • /
    • 1995
  • A porous glass-ceramics body was prepared in the phosphate system. The glass composition of 47.2CaO-22.2TiO2-30.6P2O5 (mol%) containing a few weight percent of ZrO2 was suitable for a mother glass of a porous glass-ceramics. The dense glass-ceramics body was made by a two-step heat treatment of the mother glass. The crystalline phases of the glass-ceramics were $\beta$-Ca3(PO4)2 and CaTi4(PO4)6. The $\beta$-Ca3(PO4)2 phase could be selectively leached out with HCl solution and thus a crystalline $\beta$-Ca3(PO4)2 skeleton was remained. The dimension and shape of the porous glass-ceramics were nearly the same as the those of the first formed glass. The specific surface area and average proe radius of the porous glass-ceramics were 19$m^2$/g and 22 nm, respectively.

  • PDF

Tribological Behavior of Silicon Carbide Ceramics - A Review

  • Sharma, Sandan Kumar;Kumar, B. Venkata Manoj;Kim, Young-Wook
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.581-596
    • /
    • 2016
  • A comprehensive review on sliding and solid particle erosion wear characteristics of silicon carbide (SiC) ceramics and SiC composites is provided. Sliding or erosion wear behavior of ceramics is dependent on various material characteristics as well as test parameters. Effects of microstructural and mechanical properties of SiC ceramics are particularly focused to understand tribological performance of SiC ceramics. Results obtained between varieties of pairs of SiC ceramics indicate complexity in understanding dominant mechanisms of material removal. Wear mechanisms during sliding are mainly divided in two groups as mechanical and tribochemical. In solid particle erosion conditions, wear mechanisms of SiC ceramics are explained by elastic-plastic deformation controlled micro-fracture on the surface followed by radial-lateral crack propagation beneath the plastic zone.