• Title/Summary/Keyword: Korean Ceramics

Search Result 4,722, Processing Time 0.028 seconds

Tribological Performance of Laser Textured Translucent Duplex α/β-Sialon Composite Ceramics

  • Joshi, Bhupendra;Tripathi, Khagendra;Gyawali, Gobinda;Lee, Soo Wohn
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.180-181
    • /
    • 2014
  • Optically translucent Sialon ceramics was fabricated by hot pressed sintering method. The Sialon ceramics was laser textured and their tribological performance was observed. Starved lubrication method was applied on Sialon ceramics with different dimple spacing under a load of 10N and at room temperature. The material having high dimple spacing ($200{\mu}m$) shows low coefficient of friction. The material shows mild wear and therefore, wear rate of steel ball (meeting partner) was observed to measure wear rate. Different phases Sialon ceramics were analyzed by XRD patterns. Moreover, the mechanical properties of the Sialon ceramics were observed.

  • PDF

A Study on Fabrication of Semiconducting $BaTiO_3$ Ceramics at Lower Sintering Temperature (저온 소결에 의한 반도성 $BaTiO_3$ 세라믹스 제조에 관한 연구)

  • 김준수;김흥수;권오성;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.183-191
    • /
    • 1996
  • For the fabrication of semiconducting BaTiO3 ceramics at lower sintering temperature BN was selected as a sintering aid and the microsturcture of semiconducting BaTiO3 ceramics and PTCR characteristics by their microstructural changes were investigated. by adding BN to 0.1 mol% Sb2O3-doped BaTiO3 ceramics the sintering temperature showing semiconducting BaTiO3 ceramics was reduced by 16$0^{\circ}C$ from 130$0^{\circ}C$ to 114$0^{\circ}C$ and the specific resistivity ratio was increased as the amount of BN was increased.

  • PDF

Thermal Shock Behavior of Barium Titanate Ceramics

  • Jae Yeon Kim;Young Wook Kim;Kyeong Sik Cho;June Gunn Lee
    • The Korean Journal of Ceramics
    • /
    • v.3 no.3
    • /
    • pp.195-198
    • /
    • 1997
  • Post-firing process of electronic ceramic, such as electroding and encapsultion with resin, often causes damage by thermal shock. The thermal shock behavior of $BaTiO_3$ ceramics was investigated by the down-quench test, where the relative strength retained is determined after the sample is quenched from an elevated temperature into a fixed temperature bath. The critical temperature drop, $\DeltaTc$, was evaluated for three kinds of sintered $BaTiO_3$ ceramics, which were formed by extrustioin, uniaxial pressing using granules, and uniaxial pressing using powders. A drastic loss in strength caused by microcracking was observed for the specimens quenched with $\DeltaT\geq150^{\circ}C$. This concentp can be adopted as a method of the quality control by monitoring the sudden drop of the strength of capacitor products after each exposure to heat.

  • PDF

Effects of Chemical Inhomogeneity on Phase Coexistence in Pb(Zr, Ti))$O_3$ Ceramics at Morphotropic Tetragonal and Rhombohedral Phase Boundary (정방정상과 능면체상의 경계조성 Pb(Zr, Ti)$O_3$ 세라믹스에서 화학조성의 불균일성이 상공존에 미치는 영향)

  • 천채일;김호기
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.1027-1033
    • /
    • 1990
  • In order to identify the origin of phase coexistence at morphotropic tetragonal and rhombohedral boundary in PZT ceramics, the effect of chemical inhomogeneity on phase coexistence region was investigated. Two kinds of PZT ceramics with different chemical homogeneity were prepared by conventional solid state reaction and co-precipitation method. There was coexistence of tetragonal and rhombohedral phase over a wide composition range in PZT ceramics calcined by solid state reaction, and there was also phase coexistence of which region was reduced considerably in sintered samples. And phase coexistence region was not observed in co-precipitated PZT ceramics(within 1 mole%). Therefore compositional fluctuation is considered to be major origin of the phase coexistence at morphotropic phae boundary in PZT ceramics.

  • PDF

Recent characteristics of dental esthetic restorative ceramics (임상가를 위한 특집 1 - 치과심미수복용 세라믹의 최신 특성평가)

  • Oh, Seunghan
    • The Journal of the Korean dental association
    • /
    • v.51 no.1
    • /
    • pp.6-11
    • /
    • 2013
  • Dental ceramics is well known to have excellent esthetics, biocompatibility as well as high compressive strength. However, the fragility of ceramics against tensile and shear loads leading to the delayed fracture of micro crack on ceramic surface and the backwardness of ceramic fabrication technique limit the usage of ceramic materials in dentistry. Among all ceramic materials, zirconia has been introduced to overcome the drawback of conventional dental ceramics in the field of dentistry due to the nature of zirconia featuring proper opalescence and high fracture toughness. Also, novel manufacturing techniques enable ceramic materials to prepare high esthetic anterior and posterior all ceramic system. In this paper, it is introduced and discussed that novel techniques characterizing the bond strength between zirconia core and veneering ceramics and analyzing the fluorescence of dental ceramics in order to overcome the gap between the results of basic research and the feasibility of the results in the field of dental clinics.

Dielectric Properties and Electrocaloric Effects of PLZT Ferroelectric Ceramics by Applying Electric Fields (전계 인가에 따른 PLZT 강유전체의 유전특성 및 전기열량 효과)

  • Kim, You-Seok;Yoo, Ju-Hyun;Jeong, Yeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.164-167
    • /
    • 2016
  • In this study, in order to develop relaxor ferroelectric ceramics for refrigeration device application with large electrocaloric effect, PLZT(8/65/35) composition was fabricated using conventional solid-state method. The Curi temperature of this composition PLZT ceramics was $230^{\circ}C$, and the P-E hysteresis loops of the PLZT ceramics as a fuction of temperature became slim by degrees with higher temperatures. The maximum value of ${\Delta}T$ of $0.243^{\circ}C$ in ambient temperature of $215^{\circ}C$ with 30 kV/cm was appeared. It is considered that PLZT ceramics possess the possibility of refrigeration device application.

Machinability of Pre-sintered Alumina Ceramics (알루미나 세라믹 가소결재의 피삭성 -다이아몬드 및 CBN공구의 절삭 성능-)

  • 김성청
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.41-46
    • /
    • 1996
  • In this study, unsintered and pre-sintered low purity alumina ceramics were machined with various tools to clarify the machinability, optimum tool materials and optimum cutting conditions. The main conclusions obtained were as follows. (1)In the case of dry cutting, the sintered diamond and natural diamond tools exhibit better performance in machining of the ceramic pre-sintered at lower temperature, and the tool lives of both tools in machining the ceramics pre-sintered at high temperature becomes extremely short. (2)The performance of CBN tool becomes better in dry machining of the ceramics pre-sintered at higher temperature. (3)When the pre-sintered ceramics were wet machined with sintered diamond, the tool life becomes considerably long, and higher cutting speed can be used than in the case of the CBN and ceramic tools, the tool lives becomes shorter at wet cutting than at dry cutting, especially exhibiting extremely short tool life in wet cutting with ceramic tool.

  • PDF

Processing of Polymer-derived Microcellular Ceramics Containing Reactive Fillers

  • Kim, Young-Wook;Jang, Doo-Hee;Eom, Jung-Hye;Song, In-Hyuck;Kim, Hai-Doo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.101-102
    • /
    • 2006
  • Processing techniques for producing microcellular silicon carbide, mullite, and cordierite ceramics have been developed by a reaction method that incorporates a polysiloxane and reactive fillers. The techniques developed in this study offer substantial flexibility for producing microcellular ceramics whereby cell size, cell density, degree of interconnectivity, composition, and porosity can all be effectively controlled. It is demonstrated that the adjustment of filler composition enables the possibility of tailoring the composition and properties of the microcellular ceramics. The present results suggest that the proposed novel processing techniques are suitable for the manufacture of microcellular ceramics with high morphological uniformity.

  • PDF

Transparent Ceramics for Visible/IR Windows: Processing, Materials and Characterization

  • Jung, Wook Ki;Ma, Ho Jin;Kim, Ha-Neul;Kim, Do Kyung
    • Korean Journal of Materials Research
    • /
    • v.28 no.10
    • /
    • pp.551-563
    • /
    • 2018
  • Visible and IR windows require a combination of high optical transparency and superior thermal and mechanical properties. Materials, fabrication and characterization of transparent ceramics for visible/IR windows are discussed in this review. The transparent polycrystalline $Y_2O_3$, $Y_2O_3-MgO$ nanocomposites and $MgAl_2O_4$ spinel ceramics are fabricated by advanced ceramic processing and the use of special sintering technologies. Ceramic processing conditions for achieveing fully densified transparent ceramics are strongly dependent on the initial powder characteristics. In addition, appropriate use of sintering technologies, including vacuum sintering, hot-pressing and spark plasama sintering methods, results in outstanding thermal and mechanical properties as well as high optical transparency of the final products. Specifically, the elimination of light scattering factors, including residual pores, second phases and grain boundaries, is a key technique for improving the characteristics of the transparent ceramics. This paper discusses the current research issues related to synthesis methods and sintering processes for yttria-based transparent ceramics and $MgAl_2O_4$ spinel.

The Effect of the Spray-Dried Ceramic Granules' Compressive Strength on the Aerosol Deposition method (분무건조된 세라믹 과립분말의 압축강도가 에어로졸 데포지션 공정에 미치는 효과)

  • Kim, Jong-Woo;Ryu, Jungho;Hahn, Byung-Dong;Choi, Jong-Jin;Yoon, Woon-Ha;Ahn, Cheol-Woo;Choi, Joon-Hwan;Park, Dong-Soo
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.127-132
    • /
    • 2013
  • Recently, Aerosol Deposition method has attracted considerable attention because of its advantages to produce ceramic coatings on various substrates at room temperature. This method is strongly dependent on the raw powder, which should have high mobility with carrier gas and moderate mechanical strength to be crushed onto the substrate. In this report, the effects of the ceramic granules' compressive strength on the ceramic coating formation are discussed. The ceramic granules were prepared by spray-drying method and heat treated at various temperatures. It was found that at the moderate mechanical strength of ceramic granules gave more effective film formation behavior during Aerosol Deposition method.