• 제목/요약/키워드: Korea research reactor

검색결과 2,110건 처리시간 0.031초

연구용원자로에서 수조수관리계통 운전에 따른 수조수 온도 해석 (Analysis on Pool Temperature Variation along Pool Water Management System Operation in Research Reactor)

  • 최정운;이선일;박기정;서경우
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제5권2호
    • /
    • pp.135-143
    • /
    • 2017
  • 국내 유일의 연구용원자로인 하나로(Hi-flux Advanced Neutron Application ReactOr)는 다목적으로 중성자를 이용하기 위해 개방형 수조 내 노심이 존재하는 구조이며, 노심에서 발생되는 핵분열 열을 제거하기 위한 일차 냉각계통, 그리고 연결된 유체계통이 구비되어 있다. 원자로 수조 상부 근방에서 진행되는 방사성 작업 시 작업자의 방사능 피폭을 최소화하기 위해 수조고온층계통에 의해 상부에 고온층이 형성되어 있으며, 다소 저온 영역에 있는 방사능 가스 및 이물질이 상부로 올라오는 것을 방지하기 위해 수조수 온도를 $50^{\circ}C$이하로 제한하고 있으며 이를 위해 수조수관리계통이 연결되어 있다. 수조수관리계통의 구비된 판형열교환기의 열용량을 정상운전 조건에서 260 kW가 되도록 설계하여 각 수조에서 발생되는 열원을 제거하는지에 대해 평가하였고, 원자로 운전 모드와 관계없이 정상적으로 유체계통이 운전된다면 각 수조의 수조수 온도는 제한치 이하를 유지하고 있음을 확인하였다.

Development of Freeze-Dried DOTMP Kits for Labeling with 68Ga

  • Lim, Jae Cheong;Choi, Sang Mu;Cho, Eun Ha;Lee, So Young;Dho, So Hee;Kim, Soo Yong
    • 방사선산업학회지
    • /
    • 제9권2호
    • /
    • pp.63-68
    • /
    • 2015
  • Lyophilized DOTMP kits were prepared using DOTMP, ammonium acetate, and ascorbic acid. The $^{68}Ga$-DOTMP was prepared by incubating the kit dissolved in 0.5 ml of concentrated $^{68}Ga$ using NaCl method and 0.5 ml of DDW, at $100^{\circ}C$ for 7 min. The labeling yield was evaluated by two solvent systems of TLC. 1 MBq of concentrated $^{68}Ga$ was labeled with $0.8{\mu}g$ of DOTMP by high radiolabeling yield (>98%), which was determined by two TLC methods. The composition of the prepared freeze-dried vial is $400{\mu}g$ of DOTMP, 19.27 mg of ammonium acetate and 17.62 mg of ascorbic acid. ~555 MBq of $^{68}Ga$-DOTMP was prepared with excellent radiochemical purity (>98%) and it was stable for 4 hr at room temperature. In conclusion, Freeze-dried DOTMP kits for the convenient preparation of $^{68}Ga$-DOTMP have been developed. Availability of this kit is expected to stimulate the widespread use of $^{68}Ga$-DOTMP in the fields of nuclear medicine.

Stable In-reactor Performance of Centrifugally Atomized U-l0wt.%Mo Dispersion Fuel at Low Temperature

  • Kim, Ki-Hwan;Kwon, Hee-Jun;Park, Jong-Man;Lee, Yoon-Sang;Kim, Chang-Kyu
    • Nuclear Engineering and Technology
    • /
    • 제33권4호
    • /
    • pp.365-374
    • /
    • 2001
  • In order to examine the in-reactor performance of very-high-density dispersion fuels for high flux performance research reactors, U-l0wt.%Mo microplates containing centrifugally atomized powder were irradiated at low temperature. The U-l0wt.%Mo dispersion fuels show stable in- reactor irradiation behaviors even at high burn-up, similar to U$_3$Si$_2$ dispersion fuels. The atomized U-l0wt.%Mo fuel particles have a fine and a relatively uniform fission gas bubble size distribution. Moreover, only one of third of the area of the atomized fuel cross-sections at 70a1.% burn-up shows fission gas bubble-free zones, This appears to be the result of segregation into high Mo and low Mo.

  • PDF

Characterization of neutron spectra for NAA irradiation holes in H-LPRR through Monte Carlo simulation

  • Kyung-O Kim;Gyuhong Roh;Byungchul Lee
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4226-4230
    • /
    • 2022
  • The Korea Atomic Energy Research Institute (KAERI) has designed a Hybrid-Low Power Research Reactor (H-LPRR) which can be used for critical assembly and conventional research reactor as well. It is an open tank-in-pool type research reactor (Thermal Power: 50 kWth) of which the most important applications are Neutron Activation Analysis (NAA), Radioisotope (RI) production, education and training. There are eight irradiation holes on the edge of the reactor core: IR (6 holes for RI production) and NA (2 holes for NAA) holes. In order to quantify the elemental concentration in target samples through the Instrumental Neutron Activation Analysis (INAA), it is necessary to measure neutron spectrum parameters such as thermal neutron flux, the deviation from the ideal 1/E epithermal neutron flux distribution (α), and the thermal-to-epithermal neutron flux ratio (f) for the irradiation holes. In this study, the MCNP6.1 code and FORTRAN 90 language are applied to determine the parameters for the two irradiation holes (NA-SW and NA-NW) in H-LPRR, and in particular its α and f parameters are compared to values of other research reactors. The results confirmed that the neutron irradiation holes in H-LPRR are designed to be sufficiently applied to neutron activation analysis, and its performance is comparable to that of foreign research reactors including the TRIGA MARK II.

A FLOW AND PRESSURE DISTRIBUTION OF APR+ REACTOR UNDER THE 4-PUMP RUNNING CONDITIONS WITH A BALANCED FLOW RATE

  • Euh, D.J.;Kim, K.H.;Youn, Y.J.;Bae, J.H.;Chu, I.C.;Kim, J.T.;Kang, H.S.;Choi, H.S.;Lee, S.T.;Kwon, T.S.
    • Nuclear Engineering and Technology
    • /
    • 제44권7호
    • /
    • pp.735-744
    • /
    • 2012
  • In order to quantify the flow distribution characteristics of APR+ reactor, a test was performed on a test facility, ACOP ($\underline{A}$PR+ $\underline{C}$ore Flow & $\underline{P}$ressure Test Facility), having a length scale of 1/5 referring to the prototype plant. The major parameters are core inlet flow and outlet pressure distribution and sectional pressure drops along the major flow path inside reactor vessel. To preserve the flow characteristics of prototype plant, the test facility was designed based on a preservation of major flow path geometry. An Euler number is considered as primary dimensionless parameter, which is conserved with a 1/40.9 of Reynolds number scaling ratio. ACOP simplifies each fuel assembly into a hydraulic simulator having the same axial flow resistance and lateral cross flow characteristics. In order to supply boundary condition to estimate thermal margins of the reactor, the distribution of inlet core flow and core exit pressure were measured in each of 257 fuel assembly simulators. In total, 584 points of static pressure and differential pressures were measured with a limited number of differential pressure transmitters by developing a sequential operation system of valves. In the current study, reactor flow characteristics under the balanced four-cold leg flow conditions at each of the cold legs were quantified, which is a part of the test matrix composing the APR+ flow distribution test program. The final identification of the reactor flow distribution was obtained by ensemble averaging 15 independent test data. The details of the design of the test facility, experiment, and data analysis are included in the current paper.

Radiation damage to Ni-based alloys in Wolsong CANDU reactor environments

  • Kwon, Junhyun;Jin, Hyung-Ha;Lee, Gyeong-Geun;Park, Dong-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.915-921
    • /
    • 2019
  • Radiation damage due to neutrons has been calculated in Ni-based alloys in Wolsong CANDU reactor environments. Two damage parameters are considered: displacement damage, and transmutation gas production. We used the SPECTER and SRIM computer codes in quantifying radiation damage. In addition, damage caused by Ni two-step reactions was considered. Estimations were made for the annulus spacers in a CANDU reactor that are located axially along a fuel channel and made of Inconel X-750. The calculation results indicate that the transmutation gas production from the Ni two-step reactions is predominant as the effective full power year increases. The displacement damage due to recoil atoms produced from Ni two-step reactions accounts for over 30% out of the total displacement damage.

연구용원자로 해체비용 산정을 위한 단위비용인자 산출 (Calculating the Unit Cost Factors for Decommissioning Cost Estimation of the Nuclear Research Reactor)

  • 정관성;이동규;정종헌;이근우
    • 방사성폐기물학회지
    • /
    • 제4권4호
    • /
    • pp.385-391
    • /
    • 2006
  • 연구용원자로 해체비용은 해체대상물에 대한 특성 및 제원에 맞게 해체작업을 분류하고 구성요소를 설정하여 단위비용인자를 바탕으로 한 공학적 비용 산정 방법으로 해체비용을 산정한다. 연구용원자로에 대한 해체비용은 크게 인건비, 장비 및 재료비로 구성이 되는데 해체작업에 소요되는 인건비는 해체대상물에 소요되는 작업시간을 바탕으로 계산을 한다. 본 논문에서는 연구용원자로 해체비용 산정 시 인건비 계산에 필요한 단위비용인자 및 작업 난이도 인자를 산출하였다.

  • PDF

Structural Properties of Dielectric Barrier Reactor with Hole (DBH) for CF4 Decomposition

  • Jung Jung Gun;Kim Jong Suk;Park Jae Yoon;Kim Kwang Soo;Rim Geun Hie
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권4호
    • /
    • pp.30-35
    • /
    • 2003
  • In this paper, the $CF_4$ decomposition efficiency is investigated for three simulated plasma reactors that are needle plate reactor, metal particle reactor, and dielectric barrier reactor with hole (DBH). The$CF_4$ decomposition efficiency by DBH is much better than that by needle plate reactor or metal particle reactor. When applied voltage is increased up to the critical voltage for spark formation in the all reactors, the $CF_4$ decomposition efficiency is increased. The $CF_4$ decomposition efficiency in needle plate reactor and metal particle reactor is about $12\%$ and $22\%$ respectively at applied voltage of 23 kV (consumption power: 110 W) and $CF_4$ concentration of 500 ppm, however, the $CF_4$ decomposition efficiency is more than $95\%$ in case of DBH. DBH should be much better than two reactors investigated for $CF_4$ decomposition.