• Title/Summary/Keyword: Korea hydrographic and oceanographic administration

Search Result 67, Processing Time 0.025 seconds

Satellite-altimeter-derived East Sea Surface Currents: Estimation, Description and Variability Pattern (인공위성 고도계 자료로 추정한 동해 표층해류와 공간분포 변동성)

  • Choi, Byoung-Ju;Byun, Do-Seong;Lee, Kang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.4
    • /
    • pp.225-242
    • /
    • 2012
  • This is the first attempt to produce simultaneous surface current field from satellite altimeter data for the entire East Sea and to provide surface current information to users with formal description. It is possible to estimate surface geostrophic current field in near real-time because satellite altimeters and coastal tide gauges supply sea level data for the whole East Sea. Strength and location of the major currents and meso-scale eddies can be identified from the estimated surface geostrophic current field. The mean locations of major surface currents were explicated relative to topographic, ocean-surface and undersea features with schematic representation of surface circulation. In order to demonstrate the practical use of this surface current information, exemplary descriptions of annual, seasonal and monthly mean surface geostrophic current distributions were presented. In order to objectively classify surface circulation patterns in the East Sea, empirical orthogonal function (EOF) analysis was performed on the estimated 16-year (1993-2008) surface current data. The first mode was associated with intensification or weakening of the East Korea Warm Current (EKWC) flowing northward along the east coast of Korea and of the anti-cyclonic circulation southwest of Yamato Basin. The second mode was associated with meandering paths of the EKWC in the southern East Sea with wavelength of 300 km. The first and second modes had inter-annual variations. The East Sea surface circulation was classified as inertial boundary current pattern, Tsushima Warm Current pattern, meandering pattern, and Offshore Branch pattern by the time coefficient of the first two EOF modes.

Coastal Wave Hind-Casting Modelling Using ECMWF Wind Dataset (ECMWF 바람자료를 이용한 연안 파랑후측모델링)

  • Kang, Tae-Soon;Park, Jong-Jip;Eum, Ho-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.599-607
    • /
    • 2015
  • The purpose of this study is to reproduce long-term wave fields in coastal waters of Korea based on wave hind-casting modelling and discuss its applications. To validate wind data(NCEP, ECMWF, JMA-MSM), comparison of wind data was done with wave buoy data. JMA-MSM predicted wind data with high accuracy. But due to relatively longer period of ECMWF wind data as compared to that of JMA-MSM, wind data set of ECMWF(2001~2014) was used to perform wave hind-casting modelling. Results from numerical modelling were verified with the observed data of wave buoys installed by Korea Meteorological Administration(KMA) and Korea Hydrographic and Oceanographic Agency(KHOA) on offshore waters. The results agree well with observations at buoy stations, especially during the event periods such as a typhoon. Consequently, the wave data reproduced by wave hind-casting modelling was used to obtain missing data in wave observation buoys. The obtained missing data indicated underestimation of maximum wave height during the event period at some points of buoys. Reasons for such underestimation may be due to larger time interval and resolution of the input wind data, water depth and grid size etc. The methodology used in present study can be used to analyze coastal erosion data in conjunction with a wave characteristic of the event period in coastal areas. Additionally, the method can be used in the coastal disaster vulnerability assessment to generate wave points of interest.

An Application of Statistical Downscaling Method for Construction of High-Resolution Coastal Wave Prediction System in East Sea (고해상도 동해 연안 파랑예측모델 구축을 위한 통계적 규모축소화 방법 적용)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae;Lee, Won-Hak
    • Journal of the Korean earth science society
    • /
    • v.40 no.3
    • /
    • pp.259-271
    • /
    • 2019
  • A statistical downscaling method was adopted in order to establish the high-resolution wave prediction system in the East Sea coastal area. This system used forecast data from the Global Wave Watch (GWW) model, and the East Sea and Busan Coastal Wave Watch (CWW) model operated by the Korea Meteorological Administration (KMA). We used the CWW forecast data until three days and the GWW forecast data from three to seven days to implement the statistical downscaling method (inverse distance weight interpolation and conditional merge). The two-dimensional and station wave heights as well as sea surface wind speed from the high-resolution coastal prediction system were verified with statistical analysis, using an initial analysis field and oceanic observation with buoys carried out by the KMA and the Korea Hydrographic and Oceanographic Agency (KHOA). Similar to the predictive performance of the GWW and the CWW data, the system has a high predictive performance at the initial stages that decreased gradually with forecast time. As a result, during the entire prediction period, the correlation coefficient and root mean square error of the predicted wave heights improved from 0.46 and 0.34 m to 0.6 and 0.28 m before and after applying the statistical downscaling method.

Monitoring of Tidal Sand Shoal with a Camera Monitoring System and its Morphologic Change (카메라를 활용한 조석사주 관측시스템 구축 및 지형변화)

  • Lee, Soong-Ji;Lee, Guan-Hong;Kang, Tae-Soon;Kim, Young-Taeg;Kim, Tea-Lim
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.326-333
    • /
    • 2015
  • A tidal sandshoal, called 'Puldeung' in the Daeijackdo Marine Protected Area(DMPA), is facing erosion due to sand mining in the nearby coastal region. To monitor the morphologic change and erosion of Puldeung, a camera monitoring system was established at the top of Song-Ee Mountain in Daeijack Island. The system consists of 2 Cannon digital cameras, Eye-fi memory card/Long-Term Evolution wireless network, and solar power supply. The acquired camera images were analyzed to obtain the area of Puldeung by the following methods: geometric correction of image, identification of shoreline, areal measurement of Puldeung and its error estimation. To compare the Puldeung area with previously measured area of 1.79 km2 at tidal height of 137 cm in 2008 and of 1.59 km2 at tidal height of 148 cm in 2010, we selected images with same tidal heights. The Puldeung area was 1.37 and 1.23 km2 at the tidal height of 137 and 148 cm, respectively. The erosion at DMPA is very severe and thus it is imperative to initiate the morphodynamical study on the seasonal variation and long-term evolution of Puldeung as well as the causes and measures of Puldeung erosion.

A Study on the Tidal Harmonic Analysis, and long-term Sea Level Ocillations at Incheon Bay (인천만의 조석조화해석 및 장기해수면 변동연구)

  • Lee, Yong-Chang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.505-513
    • /
    • 2010
  • This study investigate the characteristics of tidal constituents, and long-term mean sea level oscillations at Incheon bay. For this, the conditions of three tide stations around Incheon bay have examined, and carried out harmonic analysis on water level data for periods of about 40 years(1960~2007). Four major tidal constituents($M_2$, $S_2$, $K_1$, $O_1$) of each tide station showed tendency that change over the 18.61year lunar node cycle, and the type of tide at three stations is mainly semi-diurnal tides. And also, the past monthly tidal modulations are especially sensitive to the cumulative year of water level data in accuracy of tidal prediction. In case that regard the detached data at three tide stations as a single time series data of 40 years, the results of analysis on a single time series, long-term mean sea level oscillations and modulations of tidal datum at tide stations appears with a range of about 10cm, respectively. In addition, the predicted tides at the Inchcon harbor by global and regional tide models of OSU(Oregon State University) based on various satellite altimetric(Topex Poseidon, Topex Tandem, ERS, GFO) data are compared with the observed tides by KHOA(the Korea Hydrographic and Oceanographic Administration). The results show that the high resolution regional model is a quite good agreement at coastal shallow water region.

Analysis of Oceanic Current Maps of the East Sea in the Secondary School Science Textbooks (중등 과학 교과서의 동해 해류도 분석)

  • Park, Kyung-Ae;Park, Ji-Eun;Seo, Kang-Sun;Choi, Byoung-Ju;Byun, Do-Seong
    • Journal of the Korean earth science society
    • /
    • v.32 no.7
    • /
    • pp.832-859
    • /
    • 2011
  • The importance of scientific education on accurate oceanic currents and circulation has been increasingly addressed because the currents have played a significant role in climate change and global energy balance. The objectives of this study are to analyze errors of the oceanic current maps in the textbooks, to discuss a variety of error sources, to suggest how to produce a unified oceanic current map of the East Sea for the students. Twenty-seven textbooks based on the 7th National Curriculum were analyzed and quantitatively investigated on the characteristics of the current maps by comparing with both the previous literature and up-to-date scientific knowledge. All the maps in the textbooks with different mappings were converted to digitalized image data with Mercator mapping using geolocation information. Detailed analysis were performed to investigate the patterns of the Tsushima Warm Current (TWC) in the Korea Strait, to examine how closely the nearshore branch of the TWC flows along the Japanese coast, to scrutinize the features of the offshore branch of the TWC south of the subpolar front in the East Sea, to quantitatively investigate the northern range of the northward-propagating East Korea Warm Current and its latitude turning to the east, and lastly to examine the outflow of the TWC near the Tsugaru Strait and the Soya Strait. In addition, the origins, southern limits, and distances from the coast of the Liman Current and the North Korea Cold Current were analyzed. Other erroneous expressions of the currents in the textbooks were presented. These analyses revealed the problems in the present current maps of the textbooks, which might lead the students to misconception. This study also addressed a necessity in a bridge between scientists with up-to-date scientific results and educators who needed educational materials.

Internal Waves and Surface Mixing Observed by CTD and Echo Sounder in the mid-eastern Yellow Sea (황해 중동부해역에서 CTD와 음향탐지기로 관측한 내부파와 표층 혼합)

  • Lee, Sang-Ho;Choi, Byoung-Ju;Jeong, Woo Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • Acoustic backscatter profiles were measured by Eco-sounder along an east-west section in the mid-eastern Yellow Sea and at an anchoring station in the low salinity region off the Keum River estuary in September 2012, with observing physical water property structure by CTD. Tidal front was established around the sand ridge developed in 50 m depth region. Internal waves measured by Eco-sounder during low tide period in the eastern side of the sand ridge were nonlinear depression waves with wave height of 15 m and mean wavelength of 500 m. These waves were interpreted into tidal internal waves that were produced by tidal current flowing over the sand ridge to the southeast. When weakly non-linear soliton model was applied, propagation speed and period of these internal depression wave were 50 m/s and 16~18 min. Red tides by Dinoflagelates Cochlodinium were observed in the sea surface where strong acoustic scattering layer was raised up to 7 m. Hourly CTD profiles taken at the anchoring station off the Keum River estuary showed the halocline depth change by tidal current and land-sea breeze. When tidal current flowed strongly to the northeast during flood period and land-breeze of 7 m/s blew to the west, the halocline was temporally raised up as much as 2 m and acoustic profile images showed a complex structure in the surface layer within 5-m depth: in tens of seconds the declined acoustic structure of strong and weak scattering signals alternatively appeared with entrainment and intrusion shape. These acoustic profile structures in the surface mixed layer were observed for the first time in the coastal sea of the mid-eastern Yellow Sea. The acoustic profile images and turbidity data suggest that relatively transparent low-layer water be intruded or entrained into the turbid upper-layer water by vertical shear between flood current and land breeze-induced surface current.