• Title/Summary/Keyword: Korea hydrographic and oceanographic administration

Search Result 67, Processing Time 0.023 seconds

A precision analysis of Baengnyeongdo Multi-beam echosounder data using acoustic ray theory (음선이론을 이용한 백령도 부근해역 다중빔 수심측량 자료의 수직.수평 오차 분석)

  • You, Seung-Ki;Joo, Jong-Min;Choi, Jee-Woong;Kim, Young-Bae;Jung, Hyun;Kim, Seo-Cheol;Park, Sung-Kyeu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.167-173
    • /
    • 2009
  • Bathymetry survey around the Baengnyeong-do was made by the Korea Hydrographic and Oceanographic Administration (KHOA), using the Simrad EM3000 Multi-Beam EchoSounder (MBES) mounted at the hull of the R/V Badaro 1. Sound velocity were monitored with frequent sound velocity profiler(SVP) casts during the acoustic measurements. The depth distribution and fluctuation of thermocline varied locally owing to the effect of several current flows such as Kuroshio current and Yellow sea coastal waters. These uncertainties cause the falling-off in accuracy of MBES results. In this paper, the bathymetry results will be presented and their accuracy will be discussed along with comparisons to the time and spatial variations in sound velocity profile.

  • PDF

An Analysis of Oceanic Current Maps of the Yellow Sea and the East China Sea in Secondary School Science Textbooks (중등학교 과학교과서의 황해 및 동중국해 해류도 분석)

  • Park, Kyung-Ae;Park, Ji-Eun;Choi, Byoung-Ju;Lee, Sang-Ho;Lee, Eunil;Byun, Do-Seong;Kim, Young-Taeg
    • Journal of the Korean earth science society
    • /
    • v.35 no.6
    • /
    • pp.439-466
    • /
    • 2014
  • Since the unification of the diverse oceanic current maps of the East Sea in secondary school science textbooks has recently been accomplished, there have been increasing requirements for the production of a current map of the Yellow Sea (YS) and the East China Sea (ECS). This study, as its first attempt, facilitated the prospective production process of the unified oceanic current maps in YS and ECS by analyzing the maps of scientific articles and those of the present textbooks as of 2014. First of all, the analogue current maps of the textbooks and scientific articles were digitalized to retrieve the characteristics of current maps quantitatively and to make intercomparison of the maps. The currents of both YS and ECS such as the Kuroshio Current, the Taiwan Warm Current, the Tsushima Warm Current, the Yellow Sea Warm Current, the Chinese Coastal Current, the Korea Coastal Current, and the Changjiang River Flow were selected and analyzed. We made 18 items to investigate the paths of the currents. Analyses of the oceanic current maps of secondary school science textbooks and scientific articles with respect to the selected criteria revealed that the current maps of the textbooks were considerably different from the up-to-date knowledge of the current maps acquired from the scientific articles. In addition, since the currents of YS and ECS have strong seasonality, we suggest that they should be presented with at least two current maps for summer and winter in the textbooks, which may go through active discussions among experts.

Deriving the Determining Factor for the Management of Oceanographic Data (해양관측데이터 관리를 위한 결정요소 도출)

  • Kim, Sun-Tae;Lee, Tae-Young;Kim, Yong
    • Journal of Information Management
    • /
    • v.43 no.3
    • /
    • pp.97-115
    • /
    • 2012
  • This paper derives determining factor for the management of oceanographic data in two ways. 1) The type of oceanographic observation and the raw data which were collected from marine physics, marine chemistry, marine biology, marine geology area were analyzed. 2) The services of the KODC(Korea Oceangraphic Data Center), NFRDI(National Fisheries Research & Development Institute), KHOA(Korea Hydrographic and Oceanographic Administration) were analyzed to derive metadata elements for retrieval. After analyze, the 42 deciding factor were derived in the 9 areas (general, Observer, satellites, observation instruments, observatories, space, information, projects, and observational data, data processing).

Spatial and Temporal Variability of Significant Wave Height and Wave Direction in the Yellow Sea and East China Sea (황해와 동중국해에서의 유의파고와 파향의 시공간 변동성)

  • Hye-Jin Woo;Kyung-Ae Park;Kwang-Young Jeong;Do-Seong Byun;Hyun-Ju Oh
    • Journal of the Korean earth science society
    • /
    • v.44 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • Oceanic wind waves have been recognized as one of the important indicators of global warming and climate change. It is necessary to study the spatial and temporal variability of significant wave height (SWH) and wave direction in the Yellow Sea and a part of the East China Sea, which is directly affected by the East Asian monsoon and climate change. In this study, the spatial and temporal variability including seasonal and interannual variability of SWH and wave direction in the Yellow Sea and East China Sea were analyzed using European Center for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5 (ERA5) data. Prior to analyzing the variability of SWH and wave direction using the model reanalysis, the accuracy was verified through comparison with SWH and wave direction measurements from Ieodo Ocean Science Station (I-ORS). The mean SWH ranged from 0.3 to 1.6 m, and was higher in the south than in the north and higher in the center of the Yellow Sea than in the coast. The standard deviation of the SWH also showed a pattern similar to the mean. In the Yellow Sea, SWH and wave direction showed clear seasonal variability. SWH was generally highest in winter and lowest in late spring or early summer. Due to the influence of the monsoon, the wave direction propagated mainly to the south in winter and to the north in summer. The seasonal variability of SWH showed predominant interannual variability with strong variability of annual amplitudes due to the influence of typhoons in summer.

A Study on Fusion and Visualization using Multibeam Sonar Data with Various Spatial Data Sets for Marine GIS

  • Kong, Seong-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.407-412
    • /
    • 2010
  • According to the remarkable advances in sonar technology, positioning capabilities and computer processing power we can accurately image and explore the seafloor in hydrography. Especially, Multibeam Echo Sounder can provide nearly perfect coverage of the seafloor with high resolution. Since the mid-1990's, Multibeam Echo Sounders have been used for hydrographic surveying in Korea. In this study, new marine data set as an effective decision-making tool in various fields was proposed by visualizing and combining with Multibeam sonar data and marine spatial data sets such as satellite image and digital nautical chart. The proposed method was tested around the port of PyeongTaek-DangJin in the west coast of Korea. The Visualization and fusion methods are described with various marine data sets with processing. We demonstrated that new data set in marine GIS is useful in safe navigation and port management as an efficient decision-making tool.

Characteristics of Spatio-temporal Variability of Daily averaged Tidal Residuals in Korean Coasts (한국연안 일평균 조위편차의 시공간적 변동 특성)

  • Kim, Ho-Kyun;Kim, Young-Taeg
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.561-569
    • /
    • 2013
  • EOF analysis of tidal residual derived from 2003~2009 tide data was used to identify the spatio-temporal variability. The effect of sea surface air pressures and winds on the tidal residual was also investigated by the correlation analysis. The first mode accounting for 68 % of the total variance represented concurrent sea level rise or fall, and the second mode accounting for 21 % of the total variance explained alternative sea level rise and fall between West Sea coast and both South Sea and East Sea coasts. While northerly and southerly winds dominated the tidal residual in the eastern coast of Yellow Sea, the effect of sea surface air pressures on the tidal residual increased along the coastal regions from South Sea to East Sea.

Performance evaluation of Wave observation system using GPS (GPS를 이용한 파고 관측 시스템의 성능 평가)

  • Huh, Yong;Hwang, Chang-Su;Kim, Dae Hyun;Heo, Sin;Kim, Joo-Youn;Lee, Kee-Wook;Hong, Sung-Doo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.4
    • /
    • pp.357-362
    • /
    • 2012
  • Despite the Wave observations data is very important information to human life at sea, the technology development and research for wave equipments are lacking. In this study, the wave observation system using GPS was evaluated the quality of wave observation data by comparing of long-term observations. The result of the comparison of the acceleration sensor (Hippy-40) and GPS sensor (Mose-1000), the correlation coefficient of the significant wave height and significant wave periods is 0.997 and 0.990 respectively. Also in case of BIAS, the significant wave height is 0.014 m, the significant wave period is -0.212 sec. It makes no significant differences whether the acceleration sensor (Hippy-40) and GPS sensor (Mose-1000). These results of the wave observation data using GPS quality will be evaluated as very good.

Estimation of Typhoon Center Using Satellite SAR Imagery (인공위성 SAR 영상 기반 태풍 중심 산정)

  • Jung, Jun-Beom;Park, Kyung-Ae;Byun, Do-Seong;Jeong, Kwang-Yeong;Lee, Eunil
    • Journal of the Korean earth science society
    • /
    • v.40 no.5
    • /
    • pp.502-517
    • /
    • 2019
  • Global warming and rapid climate change have long affected the characteristics of typhoons in the Northwest Pacific, which has induced increasing devastating disasters along the coastal regions of the Korean peninsula. Synthetic Aperature Radar (SAR), as one of the microwave sensors, makes it possible to produce high-resolution sea surface wind field around the typhoon under cloudy atmospheric conditions, which has been impossible to obtain the winds from satellite optical and infrared sensors. The Geophysical Model Functions (GMFs) for sea surface wind retrieval from SAR data requires the input of wind direction, which should be based on the accurate estimation of the center of the typhoon. This study estimated the typhoon centers using Sentinel-1A images to improve the problem of typhoon center detection method and to reflect it in retrieving the sea surface wind. The results were validated by comparing with the typhoon best track data provided by the Korea Meteorological Administration (KMA) and Japan Meteorological Agency (JMA), and also by using infrared images of Himawari-8 satellite. The initial center position of the typhoon was determined by using VH polarization, thereby reducing the possibility of error. The detected center showed a difference of 23.76 km on average with the best track data of the four typhoons provided by the KMA and JMA. Compared to the typhoon center estimated by Himawari-8 satellite, the results showed an average spatial variation of 11.80 km except one typhoon located near land with a large difference of 58.73 km. This result suggests that high-resolution SAR images can be used to estimate the center and retrieve sea surface wind around typhoons.

Planning and Application of the Korea Ocean Gate Array (KOGA) Program (KOGA 기획과 활용연구)

  • Shin, Chang-Woong;Park, Kwang-Soon;Rho, Young-Jae;Chang, Kyung-Il;Pang, Ig-Chan;Moon, Il-Ju;Kim, Tae-Lim;Kim, Bong-Chae;Kim, Dong-Sun;Kim, Kwang-Hee;Kim, Ki-Wan;Rho, Tae-Keun;Lim, Kwan-Chang
    • Ocean and Polar Research
    • /
    • v.32 no.3
    • /
    • pp.213-228
    • /
    • 2010
  • In late 2010, the Korea Hydrographic and Oceanographic Administration proposed a national monitoring project involving the deployment of 8 realtime ocean data buoys. The area occupied by the buoy-array, located south of the Ieodo Ocean Research Station, can be regarded as a kind of gateway to Korean waters with respect to warm currents and the shipping industry. The acronym for the project, KOGA (Korea Ocean Gate Array) was derived from this aspect. To ensure the success of the project, international cooperation with the neighboring countries of China and Japan is highly desirable. Once KOGA is successfully launched and the moored buoys start to produce data, the data will be applied to various areas such as data assimilation for operational oceanography, circulation dynamics, biogeochemical studies, satellite observations, and air-sea interactions. The aim of this paper is to provide suggestions for KOGA planning and applications.

Estimation of the Surface Currents using Mean Dynamic Topography and Satellite Altimeter Data in the East Sea (평균역학고도장과 인공위성고도계 자료를 이용한 동해 표층해류 추산)

  • Lee, Sang-Hyun;Byun, Do-Seong;Choi, Byoung-Ju;Lee, Eun-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.4
    • /
    • pp.195-204
    • /
    • 2009
  • In order to estimate sea surface current fields in the East Sea, we examined characteristics of mean dynamic topography (MDT) fields (or mean surface current field, MSC) generated from three different methods. This preliminary investigation evaluates the accuracy of surface currents estimated from satellite-derived sea level anomaly (SLA) data and three MDT fields in the East Sea. AVISO (Archiving, Validation and Interpretation of Satellite Oceanographic data) provides a MDT field derived from satellite observation and numerical models with $0.25^{\circ}$ horizontal resolution. Steric height field relative to 500 dbar from temperature and salinity profiles in the East Sea supplies another MDT field. Trajectory data of surface drifters (ARGOS) in the East Sea for 14 years provide another MSC field. Absolute dynamic topography (ADT) field is calculated by adding SLA to each MDT. Application of geostrophic equation to three different ADT fields yields three surface geostrophic current fields. Comparisons were made between the estimated surface currents from the three different methods and in-situ current measurements from a ship-mounted ADCP (Acoustic Doppler Current Profiler) in the southwestern East Sea in 2005. For offshore areas more than 50 km away from the land, the correlation coefficients (R) between the estimated versus the measured currents range from 0.58 to 0.73, with 17.1 to $21.7\;cm\;s^{-1}$ root mean square deviation (RMSD). For coastal ocean within 50 km from the land, however, R ranges from 0.06 to 0.46 and RMSD ranges from 15.5 to $28.0\;cm\;s^{-1}$. Results from this study reveal that a new approach in producing MDT and SLA is required to improve the accuracy of surface current estimations for the shallow costal zones of the East Sea.