• Title/Summary/Keyword: Korea building code

Search Result 543, Processing Time 0.027 seconds

An Evaluation for Progressive Collapse Resisting Capacity of a 80F RC Flat Plate for Sustainable Super Tall Building (지속가능한 초고층 건물을 위한 80층 RC 플랫 플레이트 건물의 연쇄붕괴 저항성능 평가)

  • Seo, Dae-Won;Kim, Hae-Jin;Shin, Sung Woo
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.151-157
    • /
    • 2010
  • This study is connected with evaluation of the progressive collapse resisting capacity for sustainable RC super tall building design. As the progressive collapse is not considered in current design codes in Korea, differences between linear static and dynamic analysis based on the GSA guidelines was analyzed for better evaluation, and the analysis model of flat plate system was determined. Finally, the progressive collapse resisting capacity was evaluated for structural system of super tall building. According to this study, the results by linear dynamic analysis were underestimated than the results by linear static analysis. Thus, the dynamic coefficient value of 2 provides conservative approach. The Effective Beam Width's model, currently used in field, is useful for the analysis about lateral force, but this model does not consider the effect of load redistribution by the slab. Hence, finite element analysis considering slab element will be needed for progressive collapse resisting capacity of the flat plate system. Finally, analysis model of 80-story building designed based on KBC(Korea Building Code) shows the weakness against progressive collapse because the DCR value is over 2. Thus, the countermeasure for alternative loading path such as installment of spandrel beam and reinforcements around slab is required to prevent the progressive collapse.

An Improvement Study on National Fire Safety Code of Sprinkler System for Hydraulic Calculation Application (수리계산 적용을 위한 스프링클러설비의 화재안전기준 개선방안 연구)

  • Lee, Keun-Oh;Kang, Joo-Hyeong
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.1 s.79
    • /
    • pp.7-12
    • /
    • 2007
  • There are two kinds of design process for sprinkler system. one is pipe schedule system and the other is hydraulically designed system. We have inefficient results when we design by hydraulically designed system because the design process for sprinkler system is restricted by domestic fire code. Therefore, it is essential to do an introduction of hydraulically designed system which is based on engineering for enhancing reliability and efficiency of sprinkler system. This study presents points at issue by comparing and studying design standards of sprinkler system from Korea, Japan and NFPA, and presents improvement plans of national fire safety code of sprinkler system by processing, comparing and analyzing designs according to piping schedule and hydraulically designed system about domestic objects. Installation standards of sprinkler system have to be applied not by object buildings but by hazard classification. It is hard to design an efficient sprinkler system for fire control when water supply requirement of sprinkler systems allocated according to a size of a building because the same purpose but other buildings may request more water requirement or less. We should sublate the pipe schedule system from national fire safety code and need to introduce the hydraulically designed system. The pipe schedule system presents easy access because it is based on the forecasted engineering calculations but it is applied to only small buildings like NFPA due to its low reliability.

Performance Based Fire Engineering in Japan

  • Kohno, Mamoru;Okazaki, Tomohito
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.1
    • /
    • pp.23-30
    • /
    • 2013
  • This paper explains the Japanese present situations relevant to the fire resistance performance. Performance-based fire provisions was introduced in 1998 for the first time when the Building Standard Law was amended. However, performance-based fire resistance design had been used since long before the official introduction of performance-based provisions. A Comprehensive Technology Development Project of Ministry of Construction from 1982 to 1986 established a technical basis for performance-based fire safety engineering in Japan. A system of calculation methods for fire resistance verification was prescribed in the Ministry Notification in 2000 utilizing the results of this project as a background. This method, referred to as the Fire Resistance Verification Method (FRVM), is the standard method to verify the fire resistance performance of principal building parts such as columns, beams, and walls of steel, concrete, or wood structured buildings. For tall buildings, however, more advanced method for performance verification is often necessary because new building materials or structural systems are often used for these buildings. An example project of tall building owned by a major newspaper company is presented in this paper. Advanced thermal deformation analysis is executed to secure the fire resistance of the building.

Experimental Study of Reinforced High-Strength Concrete Beams without Stirrups Considering Shear Behaviour (전단보강근이 없는 고강도 콘크리트 깊은 보의 전단특성 실험연구)

  • Yang, Seong-Hwan;Lee, Dong-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.336-342
    • /
    • 2014
  • Shear strengths of reinforced high strength concrete beams without web reinforcement are studied with experimental analysis of 10 specimen with 2.4 shear span-to-depth ratio (a/d) beams for 4 stages of concrete compressive stength over 60MPa comparing ultimate loads and shear stresses of ACI363R and KCI code equations. Expecially, concrete compressive strengths used in shear design were essentially limited to 10,000 psi (69MPa) by ACI363R and KCI Code. The modified Code equation's shear stresses of the specimen without the limit are compared with test results. The comparison between the modified exist Code equations results and test results are expected to show an available scope to apply in construction field and to give considerations of design and contraction.

Evaluation of seismic reliability of structures designed accoring to current seismic design provision (UBC) (현행 내진 설계규준(UBC)으로 설계된 구조물의 내진 신뢰성 평가)

  • 한상환;이리형
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.113-122
    • /
    • 1995
  • The purpose of this study is to evaluate performance and safety of structures designed according to current seismic code or provisions (e.g., Uniform Building Code(UBC), NEHRP provisions, etc.) during lifetime of structures. The performance is represented in terns of reliability in this paper. To perform reliability analyses, a large number of time history response analyses for a given structure are usually required. In this study, to perform reliability analyses ground motions are generated based on nonstationary random process and structures are designed based on UBC. In this paper, responses of structures under a given earthquake is evaluated using dynamic nonlinear time history analyses and also an equivalent nonlinear system (ENS) with response scaling factors. The ENS system is described in the companion paper. Therefore, this paper evaluates the seismic performance of structures and also verify the accuracy of ENS.

  • PDF

Performing Data Integration: Handed-code Approach vs. Tool-based Approach

  • Koo, Heung-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.7
    • /
    • pp.39-44
    • /
    • 2019
  • Data integration technology is one of the key elements in building data warehouses or big data, and is used to combine data from multiple sources and provide an integrated view to users. Traditionally, the performance of data integration uses a handed-code approach or a tool-based approach that utilizes data integration tools such as ETL. There is a debate about which methods are efficient. This study is conducted to give practitioners preparing for a data integration project an insight into how to perform data integration. This paper examines the views of experts on the controversy over the adoption of ETL tools that have been on the agenda of the data integration area for over a decade.

Design Considerations on Large-scale Parallel Finite Element Code in Shared Memory Architecture with Multi-Core CPU (멀티코어 CPU를 갖는 공유 메모리 구조의 대규모 병렬 유한요소 코드에 대한 설계 고려 사항)

  • Cho, Jeong-Rae;Cho, Keunhee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.127-135
    • /
    • 2017
  • The computing environment has changed rapidly to enable large-scale finite element models to be analyzed at the PC or workstation level, such as multi-core CPU, optimal math kernel library implementing BLAS and LAPACK, and popularization of direct sparse solvers. In this paper, the design considerations on a parallel finite element code for shared memory based multi-core CPU system are proposed; (1) the use of optimized numerical libraries, (2) the use of latest direct sparse solvers, (3) parallelism using OpenMP for computing element stiffness matrices, and (4) assembly techniques using triplets, which is a type of sparse matrix storage. In addition, the parallelization effect is examined on the time-consuming works through a large scale finite element model.

Evaluation of Serviceability due to Vibration of Slab (건축구조물의 슬래브 진동에 의한 사용성 평가 연구)

  • 우운택
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.245-250
    • /
    • 2000
  • Recent building structures are superior in its ability but they are light and fiexible, and so have problems of vibration. In general, the serviceability of RC slabs was known to be good against vibration because of its hardness. However recent high-rise apartment slabs are mostly light and long, the serviceability about vibration problems of RC slabs was performed. Basic information and its influence on vibrations of RC slabs were revealed. Also, its serviceability against vibration was examined. Many tests were conducted on existing building located in Chung-Nam area. As a results, damping ratio, natural frequency, acceleration amplitude and displacement amplitude which were used to examine serviceability of the RC slabs were obtained. These results on the test building proved that its serviceability conditions were satified to meet the code against vibration.

  • PDF

Performance-Based Seismic Design of Reinforced Concrete Building Structures Using Inelastic Displacements Criteria

  • Kabeyaswa, Toshimi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.61-71
    • /
    • 1998
  • A performance-based seismic design method for reinforced concrete building structures being developed in Japan is outlined. Technical and scientific background of the performance-based design philosophy as well as recently developed seismic design guidelines are is presented, in which maximum displacement response to design earthquake motion is used as the limit-state design criteria. A method of estimating dynamic response displacement of the structures based on static nonlinear analysis is described. A theoretical estimation of nonlinear dynamic response considering the characteristics of energy input to the system is described in detail, which may be used as the standard method in the new performance-based code. A desing philosophy not only satisfying the criteria but also evaluating seismic capacity of the structures is also introduced.

  • PDF

Improvement and Evaluation for Seismic Resistant Capacity of Reinforced Concrete Frame and Braced System under Load Reversals (반복하중을 받는 철근콘크리트 골조 및 보강시스템의 내진성능 평가 및 개선)

  • 김광연;하기주;신종학;이상목;이영범;조용태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.109-114
    • /
    • 2000
  • Recently, it is required to improve the structural performance, such as durability and earthquake resistant capacity due to the deterioration of structural components in the existing reinforced concrete building with the old aging and transition of design code. Therefore, the new technology should be developed, such as seismic retrofit and improvement of structural performance in the existing reinforced concrete building. This analytical study was performed to verify the effects of basic and reinforcing system in the reinforced concrete building. The analytical results by nonlinear finite element method were compared with the experimental results and the comparisons are judged to be good.

  • PDF