• Title/Summary/Keyword: Korea Image

Search Result 19,904, Processing Time 0.049 seconds

An Estimation of Concentration of Asian Dust (PM10) Using WRF-SMOKE-CMAQ (MADRID) During Springtime in the Korean Peninsula (WRF-SMOKE-CMAQ(MADRID)을 이용한 한반도 봄철 황사(PM10)의 농도 추정)

  • Moon, Yun-Seob;Lim, Yun-Kyu;Lee, Kang-Yeol
    • Journal of the Korean earth science society
    • /
    • v.32 no.3
    • /
    • pp.276-293
    • /
    • 2011
  • In this study a modeling system consisting of Weather Research and Forecasting (WRF), Sparse Matrix Operator Kernel Emissions (SMOKE), the Community Multiscale Air Quality (CMAQ) model, and the CMAQ-Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) model has been applied to estimate enhancements of $PM_{10}$ during Asian dust events in Korea. In particular, 5 experimental formulas were applied to the WRF-SMOKE-CMAQ (MADRID) model to estimate Asian dust emissions from source locations for major Asian dust events in China and Mongolia: the US Environmental Protection Agency (EPA) model, the Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model, and the Dust Entrainment and Deposition (DEAD) model, as well as formulas by Park and In (2003), and Wang et al. (2000). According to the weather map, backward trajectory and satellite image analyses, Asian dust is generated by a strong downwind associated with the upper trough from a stagnation wave due to development of the upper jet stream, and transport of Asian dust to Korea shows up behind a surface front related to the cut-off low (known as comma type cloud) in satellite images. In the WRF-SMOKE-CMAQ modeling to estimate the PM10 concentration, Wang et al.'s experimental formula was depicted well in the temporal and spatial distribution of Asian dusts, and the GOCART model was low in mean bias errors and root mean square errors. Also, in the vertical profile analysis of Asian dusts using Wang et al's experimental formula, strong Asian dust with a concentration of more than $800\;{\mu}g/m^3$ for the period of March 31 to April 1, 2007 was transported under the boundary layer (about 1 km high), and weak Asian dust with a concentration of less than $400\;{\mu}g/m^3$ for the period of 16-17 March 2009 was transported above the boundary layer (about 1-3 km high). Furthermore, the difference between the CMAQ model and the CMAQ-MADRID model for the period of March 31 to April 1, 2007, in terms of PM10 concentration, was seen to be large in the East Asia area: the CMAQ-MADRID model showed the concentration to be about $25\;{\mu}g/m^3$ higher than the CMAQ model. In addition, the $PM_{10}$ concentration removed by the cloud liquid phase mechanism within the CMAQ-MADRID model was shown in the maximum $15\;{\mu}g/m^3$ in the Eastern Asia area.

Comparison of Perception Differences About Nuclear Energy in 4 East Asian Country Students: Aiming at $10^{th}$ Grade Students who Participated in Scientific Camps, from Four East Asian Countries: Korea, Japan, Taiwan, and Singapore (동아시아 4개국 학생들의 핵에너지에 대한 인식 비교: 과학캠프에 참가한 한국, 일본, 대만, 싱가포르 10학년 학생들을 대상으로)

  • Lee, Hyeong-Jae;Park, Sang-Tae
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.4
    • /
    • pp.775-788
    • /
    • 2012
  • This study was done at a scientific camp sponsored by Nara Women's University Secondary School, Japan. In this school, $10^{th}$ grade students from 4 East Asian countries: Korea, Japan, Taiwan, and Singapore, participated. We made a research on students' perceptions about nuclear energy. Sample populations include 77 students in total, with 12 Korean, 46 Japanese, 9 Taiwanese and 10 Singaporean students. Overall perceptions comparison about nuclear energy shows average values from the order of highest Korea, Taiwan, Singapore, and to lowest, Japan. We implemented a T-test to identify perception differences about nuclear energy, with one group that include 3 countries (Korea, Taiwan and Singapore) and another group that includes all the Japanese students. T-test results of perceptions about nuclear energy shows students from the 3 countries of Korea, Taiwan and Singapore having higher average than Japanese students. (p<.05). Korean average scores regarding overall perceptions about nuclear energy show as the highest in all 4 East Asian countries and also highest in all subcategories. On the contrary in Japan, they have lower and negative perceptions of nuclear energy. In spite of these facts, perceptions of Japanese students about nuclear energy seem lowest and negative mainly because of the recent Fukushima nuclear power plant disaster, caused by the tsunami and its subsequent damages and fears of radiation leaks, etc. This shows that negative information about future disasters and its resulting damages like the Chernobyl nuclear accident could influence more on people's risk perception than general information like nuclear energy-related technologies or the news that the plant is operating normally, etc. Even if the possibility of this kind of accident is very low, just one accident could bring abnormal risks to technology itself. This strong signal makes negative image and strengthens its perceptions to the people. This could bring a stigma about nuclear energy. This study shows that Government's policy about the highest priority for nuclear energy safety is most important. As long as such perception and decision are fixed, we found that it might not be easy to get changed again because they were already fortified and maintained.

THE PALATAL MORPHOLOGY OF THE CHILDREN WITH CLASS II DIV.1 MALOCCLUSION IN MIXED DENTITION : A STUDY USING THREE-DIMENSIONAL LASER SCANNER (혼합치열기 II급 1류 부정교합 어린이의 구개형태 : 3차원 레이저 스캐너를 이용한 연구)

  • Yang, Jung-Hyun;Lee, Sang-Hoon;Hahn, Se-Hyun;Kim, Chong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.2
    • /
    • pp.270-277
    • /
    • 2005
  • The purpose of this study was to clarify the palatal volume and anterior palatal slope of the children with class II div.1 malocclusion and normal occlusion in mixed dentition(Hellman dental age III A) using three-dimensional laser scanner. Samples were consisted of 31 children with skeletal class II div.1 malocclusion in mixed dentition and 29 children with normal occlusion and profile among the contestants in 2000-2004 Healthy Dentition Contest in Seoul. Totally 60 maxillary study model were taken. Each cast was scanned by three-dimensional laser scanner (Breuckmann opto-TOP HE, INUS, Korea) and shaped into the three-dimension image by Rapidform 2004 program(INUS, Korea). And the palatal volume and anterior palatal slope of each cast were calculated by Rapidform 2004 program(INUS, Korea). The values were statistically compared and evaluated by independent samples t-test with 95% of significance level. The results were as follows: 1. Palatal volume was significantly lesser in children with class II div.1 malocclusion than that of normal occlusion in mixed dentition(p<0.05). 2. No significant difference in the anterior palatal slope and palatal height was found between the children with class II div.1 malocclusion and normal occlusion in mixed dentition(p>0.05). 3. Palatal length was significantly greater in children with class II div.1 malocclusion than that of normal occlusion in mixed dentition(p<0.01). 4. Intercanine and intermolar width were significantly lesser in children with class II div.1 malocclusion than those of normal occlusion in mixed dentition(respectively p<0.05 and p<0.01).

  • PDF

Brain Activation Pattern and Functional Connectivity during Convergence Thinking and Chemistry Problem Solving (융합 사고와 화학문제풀이 과정에서의 두뇌 활성 양상과 기능적 연결성)

  • Kwon, Seung-Hyuk;Oh, Jae-Young;Lee, Young-Ji;Eom, Jeung-Tae;Kwon, Yong-Ju
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.3
    • /
    • pp.203-214
    • /
    • 2016
  • The purpose of this study was to investigate brain activation pattern and functional connectivity during convergence thinking based creative problem solving and chemistry problem solving to identify characteristic convergence thinking that is backbone of creative problem solving using functional magnetic resonance imaging(fMRI). A fMRI paradaigm inducing convergence thinking and chemistry problem solving was developed and adjusted on 17 highschool students, and brain activation image during task was analyzed. According to the results, superior frontal gyrus, middle frontal gyrus, inferior frontal gyrus, medial frontal gyrus, cingulate gyrus, precuneus and caudate nucleus body in left hemisphere and cuneus and caudate nucleus body in right hemisphere were significantly activated during convergence thinking. The other hand, middle frontal gyrus, medial frontal gyrus and caudate nucleus in left hemisphere and middle frontal gyrus, lingual gyrus, caudate nucleus, thalamus and culmen of cerebellum in right hemisphere were significantly activated during chemistry problem solving. As results of analysis functional connectivity, all of areas activated during convergence thinking were functionaly connected, whereas scanty connectivity of chemistry problem solving between right middle frontal gyrus, bilateral nucleus caudate tail and culmen. The results show that logical thinking, working memory, planning, imaging, languge based thinking and learning motivation were induced during convergence thinking and these functions and regions were synchronized intimately. Whereas, logical thinking and inducing learning motivation functioning during chemistry problem solving were not synchronized. These results provide concrete information about convergence thinking.

Background Parenchymal Enhancement on Breast MRI in Breast Cancer Patients : Impact on Biopsy Rate and Cancer Yield (유방암 환자에서 시행한 유방 자기공명영상에서 배경 실질 조영 증강이 조직검사율과 악성률에 미치는 영향)

  • Kim, Tae Yun;Kim, Sung Hun;Baik, Jee Eun;Kim, Yun Joo;Kang, Bong Joo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.3
    • /
    • pp.224-231
    • /
    • 2013
  • Purpose : To evaluate the potential effects of background parenchymal enhancement of MR imaging in diagnosed breast cancer patients on the rate of additional biopsy and resultant cancer yield. Materials and Methods: 322 patients who were diagnosed with breast cancer and had undergone breast MR imaging were included in this study. Two radiologists reviewed the MRI for degree of background parenchymal enhancement and additional suspicious lesions described as BI-RADS category 4 or 5 on radiologic reports. Biopsy was done for these lesions, pathology reports were reviewed to calculate the cancer yield. Results: Background parenchymal enhancement of MR imaging in a total of 322 patients were classified as minimal degree 47.5%, mild degree 28.9%, moderate degree 12.4% and marked degree 11.2%. Among these 332 patients, MR imaging of 70 patients showed additional suspicious malignant lesions described as BI-RADS category 4 or 5, and consequently, 66 patients underwent biopsy. Biopsy rates in those with minimal or mild background parenchymal enhancement and those with moderate and marked background parenchymal enhancement were 19.9% and 22.3% (p-value 0.77) respectively. Cancer yields in those with minimal or mild background parenchymal enhancement and those with moderate and marked background parenchymal enhancement were 6.5% and 5.2% (p value 0.88) respectively. Both these results did not show stastically significant difference between the two groups. Conclusion: The degree of background parenchymal enhancement in MR imaging of breast cancer patients did not significantly impact additional biopsy rates or cancer yields.

Study on sijo by Young-do Lee (이영도 시조 연구)

  • Yoo, Ji-Hwa
    • Sijohaknonchong
    • /
    • v.42
    • /
    • pp.213-238
    • /
    • 2015
  • Jeongun(丁芸) Lee, Young-do (李永道), who is deemed a representative female poet of Korea, began her literary career in May, 1946 when she published in a publication called "Bamboo Sprout, (죽순)". Her Korean identity, which was formed through her Confucius upbringing as well as traditional value system of her family, had a strong presence in her work, and she remained a quintessential figure in Korea's female sijo poet circle for 30 years until her passing in 1976. Despite the highly acclaimed talent and her noble aspirations, it is undeniable that her works did not receive fair assessment due to her private life. Against this backdrop, it is necessary to deeply inquire the literary values and beauty of Young-do Lee's sijo. As mentioned, Young-do Lee is a solidly established figure in Korea's modern poetry. The following illustrates the spirit and the world of her poetry. First, Young-do Lee lived through turbulent times and it was her country that served as the source of her sijo work. Assessing the multitude of dramatic historical events such as Japanese colonization, 8.15 Liberation of Korea, division of the nation, 6.25 Korean war, 4.19 Revolution, 5.16 military coup, it is natural that patriotism was strongly present in her work who was one of the intellectuals at the time. Second, Young-do Lee is a poet who had experienced more pain than others in terms of the turbulence of the time. Her Korean identity, which was formed through her Confucius upbringing as well as traditional value system of her family, had a strong presence in her work. Third, Jeongun Lee, Young-do is a poet of longing. The abundance and richness of her emotions were fortified through the relationship with another poet, Chihwan Yu. Fourth, Young-do Lee is a poet opened up new horizons for the modennization. The transparency of image reflected in her work and the elaborate nature of her language are outstanding. In summary, Young-do Lee was a true artist, who has a strong presence in Korea's modern poetry society, and who was a poet of patriotism, poet who suffered the turbulence of the times, and a poet of longing.

  • PDF

Development and Validation of Korean Composit Burn Index(KCBI) (한국형 산불피해강도지수(KCBI)의 개발 및 검증)

  • Lee, Hyunjoo;Lee, Joo-Mee;Won, Myoung-Soo;Lee, Sang-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.1
    • /
    • pp.163-174
    • /
    • 2012
  • CBI(Composite Burn Index) developed by USDA Forest Service is a index to measure burn severity based on remote sensing. In Korea, the CBI has been used to investigate the burn severity of fire sites for the last few years. However, it has been an argument on that CBI is not adequate to capture unique characteristics of Korean forests, and there has been a demand to develop KCBI(Korean Composite Burn Index). In this regard, this study aimed to develop KCBI by adjusting the CBI and to validate its applicability by using remote sensing technique. Uljin and Youngduk, two large fire sites burned in 2011, were selected as study areas, and forty-four sampling plots were assigned in each study area for field survey. Burn severity(BS) of the study areas were estimated by analyzing NDVI from SPOT images taken one month later of the fires. Applicability of KCBI was validated with correlation analysis between KCBI index values and NDVI values and their confusion matrix. The result showed that KCBI index values and NDVI values were closely correlated in both Uljin (r = -0.54 and p<0.01) and Youngduk (r = -0.61 and p<0.01). Thus this result supported that proposed KCBI is adequate index to measure burn severity of fire sites in Korea. There was a number of limitations, such as the low correlation coefficients between BS and KCBI and skewed distribution of KCBI sampling plots toward High and Extreme classes. Despite of these limitations, the proposed KCBI showed high potentials for estimating burn severity of fire sites in Korea, and could be improved by considering the limitations in further studies.

K-POP fandom and Korea's national reputation: An analysis on BTS fans in the U.S. (K-POP 팬덤과 한국의 국가 명성: 미국의 BTS 팬 중심 분석)

  • Soojin Kim;Hye Eun Lee
    • Journal of Public Diplomacy
    • /
    • v.3 no.1
    • /
    • pp.1-19
    • /
    • 2023
  • Objectives: This study aims to discover how the spread of K-POP and the diversification of the Korean Wave affects Korea's national reputation. K-POP stars are diversifying their interactions with fandom by creating an online space to consume various products and services related to their stars and engage in fan activities. Because of this, this study aims to examine the relevance of K-POP to national reputation through a parasocial relationship with K-POP stars by fandom forming a community and utilizing media. Methods: An online survey was conducted in English using the Amazon survey company Mechanical Turk for BTS fans living in the United States. A total of 195 people's data, excluding incomplete responses, were used for the analysis. Results: It was found that BTS fans' social media participation activities themselves did not directly affect Korea's national reputation. But the mediating effect of BTS fans' parasocial relationship was found. That is, BTS fans' social media participation activities had a positive effect on their parasocial relationships with BTS which in turn had a positive effect on their national reputation. Conlusions: The use and participation of BTS fans in social media in Korea's national reputation has no significant effect on itself, but it has been found that it affects the national reputation through forming parasocial relationships. From the study results, the parasocial relationship of K-POP fans can be used as a strategic mechanism to enhance the national image and Korea's national reputation.

Generative Adversarial Network-Based Image Conversion Among Different Computed Tomography Protocols and Vendors: Effects on Accuracy and Variability in Quantifying Regional Disease Patterns of Interstitial Lung Disease

  • Hye Jeon Hwang;Hyunjong Kim;Joon Beom Seo;Jong Chul Ye;Gyutaek Oh;Sang Min Lee;Ryoungwoo Jang;Jihye Yun;Namkug Kim;Hee Jun Park;Ho Yun Lee;Soon Ho Yoon;Kyung Eun Shin;Jae Wook Lee;Woocheol Kwon;Joo Sung Sun;Seulgi You;Myung Hee Chung;Bo Mi Gil;Jae-Kwang Lim;Youkyung Lee;Su Jin Hong;Yo Won Choi
    • Korean Journal of Radiology
    • /
    • v.24 no.8
    • /
    • pp.807-820
    • /
    • 2023
  • Objective: To assess whether computed tomography (CT) conversion across different scan parameters and manufacturers using a routable generative adversarial network (RouteGAN) can improve the accuracy and variability in quantifying interstitial lung disease (ILD) using a deep learning-based automated software. Materials and Methods: This study included patients with ILD who underwent thin-section CT. Unmatched CT images obtained using scanners from four manufacturers (vendors A-D), standard- or low-radiation doses, and sharp or medium kernels were classified into groups 1-7 according to acquisition conditions. CT images in groups 2-7 were converted into the target CT style (Group 1: vendor A, standard dose, and sharp kernel) using a RouteGAN. ILD was quantified on original and converted CT images using a deep learning-based software (Aview, Coreline Soft). The accuracy of quantification was analyzed using the dice similarity coefficient (DSC) and pixel-wise overlap accuracy metrics against manual quantification by a radiologist. Five radiologists evaluated quantification accuracy using a 10-point visual scoring system. Results: Three hundred and fifty CT slices from 150 patients (mean age: 67.6 ± 10.7 years; 56 females) were included. The overlap accuracies for quantifying total abnormalities in groups 2-7 improved after CT conversion (original vs. converted: 0.63 vs. 0.68 for DSC, 0.66 vs. 0.70 for pixel-wise recall, and 0.68 vs. 0.73 for pixel-wise precision; P < 0.002 for all). The DSCs of fibrosis score, honeycombing, and reticulation significantly increased after CT conversion (0.32 vs. 0.64, 0.19 vs. 0.47, and 0.23 vs. 0.54, P < 0.002 for all), whereas those of ground-glass opacity, consolidation, and emphysema did not change significantly or decreased slightly. The radiologists' scores were significantly higher (P < 0.001) and less variable on converted CT. Conclusion: CT conversion using a RouteGAN can improve the accuracy and variability of CT images obtained using different scan parameters and manufacturers in deep learning-based quantification of ILD.

Feasibility of Deep Learning Algorithms for Binary Classification Problems (이진 분류문제에서의 딥러닝 알고리즘의 활용 가능성 평가)

  • Kim, Kitae;Lee, Bomi;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.95-108
    • /
    • 2017
  • Recently, AlphaGo which is Bakuk (Go) artificial intelligence program by Google DeepMind, had a huge victory against Lee Sedol. Many people thought that machines would not be able to win a man in Go games because the number of paths to make a one move is more than the number of atoms in the universe unlike chess, but the result was the opposite to what people predicted. After the match, artificial intelligence technology was focused as a core technology of the fourth industrial revolution and attracted attentions from various application domains. Especially, deep learning technique have been attracted as a core artificial intelligence technology used in the AlphaGo algorithm. The deep learning technique is already being applied to many problems. Especially, it shows good performance in image recognition field. In addition, it shows good performance in high dimensional data area such as voice, image and natural language, which was difficult to get good performance using existing machine learning techniques. However, in contrast, it is difficult to find deep leaning researches on traditional business data and structured data analysis. In this study, we tried to find out whether the deep learning techniques have been studied so far can be used not only for the recognition of high dimensional data but also for the binary classification problem of traditional business data analysis such as customer churn analysis, marketing response prediction, and default prediction. And we compare the performance of the deep learning techniques with that of traditional artificial neural network models. The experimental data in the paper is the telemarketing response data of a bank in Portugal. It has input variables such as age, occupation, loan status, and the number of previous telemarketing and has a binary target variable that records whether the customer intends to open an account or not. In this study, to evaluate the possibility of utilization of deep learning algorithms and techniques in binary classification problem, we compared the performance of various models using CNN, LSTM algorithm and dropout, which are widely used algorithms and techniques in deep learning, with that of MLP models which is a traditional artificial neural network model. However, since all the network design alternatives can not be tested due to the nature of the artificial neural network, the experiment was conducted based on restricted settings on the number of hidden layers, the number of neurons in the hidden layer, the number of output data (filters), and the application conditions of the dropout technique. The F1 Score was used to evaluate the performance of models to show how well the models work to classify the interesting class instead of the overall accuracy. The detail methods for applying each deep learning technique in the experiment is as follows. The CNN algorithm is a method that reads adjacent values from a specific value and recognizes the features, but it does not matter how close the distance of each business data field is because each field is usually independent. In this experiment, we set the filter size of the CNN algorithm as the number of fields to learn the whole characteristics of the data at once, and added a hidden layer to make decision based on the additional features. For the model having two LSTM layers, the input direction of the second layer is put in reversed position with first layer in order to reduce the influence from the position of each field. In the case of the dropout technique, we set the neurons to disappear with a probability of 0.5 for each hidden layer. The experimental results show that the predicted model with the highest F1 score was the CNN model using the dropout technique, and the next best model was the MLP model with two hidden layers using the dropout technique. In this study, we were able to get some findings as the experiment had proceeded. First, models using dropout techniques have a slightly more conservative prediction than those without dropout techniques, and it generally shows better performance in classification. Second, CNN models show better classification performance than MLP models. This is interesting because it has shown good performance in binary classification problems which it rarely have been applied to, as well as in the fields where it's effectiveness has been proven. Third, the LSTM algorithm seems to be unsuitable for binary classification problems because the training time is too long compared to the performance improvement. From these results, we can confirm that some of the deep learning algorithms can be applied to solve business binary classification problems.