• Title/Summary/Keyword: Kompsat imagery

Search Result 218, Processing Time 0.028 seconds

Application Fields and Strategy of KOMPSAT-2 Imagery

  • Sakong, Ho-Sang;Im, Jung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.43-52
    • /
    • 2002
  • KOMPSAT-2 satellite is being developed to be launched in 2004 expectingly. This paper is investigating application status of satellite imagery data using various domestic and foreign references such as journals and dissertations and seeing status of policy making and project implementation. In order to promote the application of KOMPSAT-2 imagery, its application ways in each field are presented. In addition, this paper suggests strategies to induce application of KOMPSAT-2 imagery.

Topographic Mapping Using KOMPSAT Imagery

  • Lee, Ho-Nam;Seo, Hyun-Duck;Jung, Hyung-Sup
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.786-791
    • /
    • 2002
  • Mapping systems using Satellite Imagery has not been well-established compare to conventional Arial Photograph mapping systems. In order for satellite imagery to produce a stable quality of maps, it requires to follow the standard mapping procedures. In this satellite imagery study, we proposed four methods of mapping procedures. Mapping methods were established by generating trial maps and analyzing types of input data and functions of DPW (Digital Photogrammetric Workstation). On quantitative aspect, accuracy of each steps were measured by increasing 2 GCPs each time from the minimum of 6 GCPs. In DLT, with the minimum of 10 points, RMSE is 2 pixels at most. Besides that, interpretation and stereoscopic plotting using KOMPSAT-1 imagery and other simulated imagery was performed. The tests resulted that, for KOMPSAT-1 (6.6m) stereoscopic images, the possibility of interpretation is 44.79% and possibility of stereoscopic plotting is 43.75%. In the other hand, for simulated imagery (1m), the possibility of interpretation is 60.92% and possibility of stereoscopic plotting is 55.18%.

  • PDF

Three Dimensional Positioning Accuracy of KOMPSAT-1 Stereo Imagery

  • Jeong, Soo;Kim, Yong-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.4
    • /
    • pp.339-345
    • /
    • 2000
  • KOMPSAT-1 was launched on 21 December, 1999 and the main mission of the satellite is the cartography to provide the imagery from a remote earth view for the production of maps of Korean territory. For this purpose, the satellite has capability to tilt the spacecraft utmost $\pm$45 degrees to acquire stereo satellite imagery in different paths. This study aims to estimate the three dimensional positioning accuracy of stereo satellite imagery from EOC(electro-optical camera), a payload of KOMPSAT-1 satellite. For this purpose, the ground control points and check points were obtained by GPS surveying. The sensor modeling and the adjustment was performed by PCI software installed in KARI (Korea Aerospace Research Institute), which contained mathematical analysis module for KOMPSAT-1 EOC. The study areas were Taejon and Nonsan, placed in the middle part of Korea. As a result of this study, we found that the RMSE(root mean square error) value of three dimensional positioning KOMPST-1 stereo imagery can be less than 1 pixel (6.6 m) if we can use about 10 GCPs(ground control points). Then, a standarrd of FGDC (Federal Geographic Data Committee) of USA was applied to the result to estimate the three dimensional positioning accuracy of KOMPSAT-1 stereo imagery.

A Study on the Improvement of Geometric Quality of KOMPSAT-3/3A Imagery Using Planetscope Imagery (Planetscope 영상을 이용한 KOMPSAT-3/3A 영상의 기하품질 향상 방안 연구)

  • Jung, Minyoung;Kang, Wonbin;Song, Ahram;Kim, Yongil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.327-343
    • /
    • 2020
  • This study proposes a method to improve the geometric quality of KOMPSAT (Korea Multi-Purpose Satellite)-3/3A Level 1R imagery, particularly for efficient disaster damage analysis. The proposed method applies a novel grid-based SIFT (Scale Invariant Feature Transform) method to the Planetscope ortho-imagery, which solves the inherent limitations in acquiring appropriate optical satellite imagery over disaster areas, and the KOMPSAT-3/3A imagery to extract GCPs (Ground Control Points) required for the RPC (Rational Polynomial Coefficient) bias compensation. In order to validate its effectiveness, the proposed method was applied to the KOMPSAT-3 multispectral image of Gangnueng which includes the April 2019 wildfire, and the KOMPSAT-3A image of Daejeon, which was additionally selected in consideration of the diverse land cover types. The proposed method improved the geometric quality of KOMPSAT-3/3A images by reducing the positioning errors(RMSE: Root Mean Square Error) of the two images from 6.62 pixels to 1.25 pixels for KOMPSAT-3, and from 7.03 pixels to 1.66 pixels for KOMPSAT-3A. Through a visual comparison of the post-disaster KOMPSAT-3 ortho-image of Gangneung and the pre-disaster Planetscope ortho-image, the result showed appropriate geometric quality for wildfire damage analysis. This paper demonstrated the possibility of using Planetscope ortho-images as an alternative to obtain the GCPs for geometric calibration. Furthermore, the proposed method can be applied to various KOMPSAT-3/3A research studies where Planetscope ortho-images can be provided.

PREPARATION OF CARBON DIOXIDE ABSORPTION MAP USING KOMPSAT-2 IMAGERY

  • Kim, So-Ra;Lee, Woo-Kyun
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.200-203
    • /
    • 2008
  • The objective of this study is to produce the $CO_2$ (carbon dioxide) absorption map using KOMPSAT-2 imagery. For estimating the amount of $CO_2$ absorption, the stand biomass of forest was estimated with the total weight, which was the sum of individual tree weight. Individual tree volumes could be estimated by the crown width extracted from KOMPSAT-2 imagery. In particular, the carbon conversion index and the ratio of the $CO_2$ molecular weight to the C atomic weight, reported in the IPCC (Intergovernmental Panel on Climate Change) guideline, was used to convert the stand biomass into the amount of $CO_2$ absorption. Thereafter, the KOMPSAT-2 imagery was classified with the SBC (segment based classification) method in order to quantify $CO_2$ absorption by tree species. As a result, the map of $CO_2$ absorption was produced and the amount of $CO_2$ absorption was estimated by tree species.

  • PDF

Mapping 3D Shorelines Using KOMPSAT-2 Imagery and Airborne LiDAR Data (KOMPSAT-2 영상과 항공 LiDAR 자료를 이용한 3차원 해안선 매핑)

  • Choung, Yun Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • A shoreline mapping is essential for describing coastal areas, estimating coastal erosions and managing coastal properties. This study has planned to map the 3D shorelines with the airborne LiDAR(Light Detection and Ranging) data and the KOMPSAT-2 imagery, acquired in Uljin, Korea. Following to the study, the DSM(Digital Surface Model) is generated firstly with the given LiDAR data, while the NDWI(Normalized Difference Water Index) imagery is generated by the given KOMPSAT-2 imagery. The classification method is employed to generate water and land clusters from the NDWI imagery, as the 2D shorelines are selected from the boundaries between the two clusters. Lastly, the 3D shorelines are constructed by adding the elevation information obtained from the DSM into the generated 2D shorelines. As a result, the constructed 3D shorelines have had 0.90m horizontal accuracy and 0.10m vertical accuracy. This statistical results could be concluded in that the generated 3D shorelines shows the relatively high accuracy on classified water and land surfaces, but relatively low accuracies on unclassified water and land surfaces.

An Analysis of Agricultural Infrastructure Status of North Korea Using Satellite Imagery (인공위성영상을 활용한 북한의 농업생산기반 실태분석)

  • Kim, Kwanho;Lee, Sunghack;Choi, Jinyong
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.45-54
    • /
    • 2014
  • In this study, Agricultural Infrastructures of Shincheon-gun in North Korea are investigated using Kompsat-2 and RapidEye satellite imagery. Target agricultural infrastructures are agricultural landuse, irrigation and drainage canals, dammed pools for irrigation and pumping stations. KOMPSAT-2 satellite imagery are use to investigate agricultural hydraulic structures and agricultural landuse are investigated by RapidEye Imagery. Geometric correction are performed using 28 GCP and QUAC method are used for atmospherical correction in all imagery. ISODATA clustering and naked-eye classification method are used for extracting agricultural hydraulic structures and Object-based analysis is applied to classifying the agricultural landuse. Extraction results of agricultural hydraulic structures and agricultural are presented and we suggest the applicability of satellite imagery to investigate agricultural infrastructures in North Korea.

  • PDF

Digital Plotting with KOMPSAT-1 EOC Stereo Images using Digital Photogrammetric Workstation

  • Jeong, Soo;Kim, Youn-Soo;Lee, Ho-Nam
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.25-33
    • /
    • 2002
  • In 1799, Korea has become a country that holds Earth observation satellite in orbit as they had succeeded in the launch of KOPMSAT-1, the first Korean Earth observation satellite for the practical purpose. For the wide application of the satellite imagery, various application techniques are required, and topographic mapping is essential technique for the application in various fields. Moreover, considering that the main mission of the KOMPSAT-1 is to provide the satellite imagery for the mapping of Korean peninsula, the topographic mapping using KOMPSAT-1 EOC imagery is very significant. In this paper, we showed the possibility of digital plotting using KOMPSAT-1 EOC stereo images to produce topographic map. For the purpose, we implemented experimental stereo plotting using digital photogrammetric workstation and analyzed the procedure. As a result of this paper, we showed that some elements consist in 1:25,000 scale map can be plotted from KOMPSAT-1 Stereo images.

Soil Moisture Estimation Using KOMPSAT-3 and KOMPSAT-5 SAR Images and Its Validation: A Case Study of Western Area in Jeju Island (KOMPSAT-3와 KOMPSAT-5 SAR 영상을 이용한 토양수분 산정과 결과 검증: 제주 서부지역 사례 연구)

  • Jihyun Lee;Hayoung Lee;Kwangseob Kim;Kiwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1185-1193
    • /
    • 2023
  • The increasing interest in soil moisture data from satellite imagery for applications in hydrology, meteorology, and agriculture has led to the development of methods to produce variable-resolution soil moisture maps. Research on accurate soil moisture estimation using satellite imagery is essential for remote sensing applications. The purpose of this study is to generate a soil moisture estimation map for a test area using KOMPSAT-3/3A and KOMPSAT-5 SAR imagery and to quantitatively compare the results with soil moisture data from the Soil Moisture Active Passive (SMAP) mission provided by NASA, with a focus on accuracy validation. In addition, the Korean Environmental Geographic Information Service (EGIS) land cover map was used to determine soil moisture, especially in agricultural and forested regions. The selected test area for this study is the western part of Jeju, South Korea, where input data were available for the soil moisture estimation algorithm based on the Water Cloud Model (WCM). Synthetic Aperture Radar (SAR) imagery from KOMPSAT-5 HV and Sentinel-1 VV were used for soil moisture estimation, while vegetation indices were calculated from the surface reflectance of KOMPSAT-3 imagery. Comparison of the derived soil moisture results with SMAP (L-3) and SMAP (L-4) data by differencing showed a mean difference of 4.13±3.60 p% and 14.24±2.10 p%, respectively, indicating a level of agreement. This research suggests the potential for producing highly accurate and precise soil moisture maps using future South Korean satellite imagery and publicly available data sources, as demonstrated in this study.

Land Cover Classification Based on High Resolution KOMPSAT-3 Satellite Imagery Using Deep Neural Network Model (심층신경망 모델을 이용한 고해상도 KOMPSAT-3 위성영상 기반 토지피복분류)

  • MOON, Gab-Su;KIM, Kyoung-Seop;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.252-262
    • /
    • 2020
  • In Remote Sensing, a machine learning based SVM model is typically utilized for land cover classification. And study using neural network models is also being carried out continuously. But study using high-resolution imagery of KOMPSAT is insufficient. Therefore, the purpose of this study is to assess the accuracy of land cover classification by neural network models using high-resolution KOMPSAT-3 satellite imagery. After acquiring satellite imagery of coastal areas near Gyeongju City, training data were produced. And land cover was classified with the SVM, ANN and DNN models for the three items of water, vegetation and land. Then, the accuracy of the classification results was quantitatively assessed through error matrix: the result using DNN model showed the best with 92.0% accuracy. It is necessary to supplement the training data through future multi-temporal satellite imagery, and to carry out classifications for various items.