• Title/Summary/Keyword: Kompsat

Search Result 1,079, Processing Time 0.041 seconds

Accuracy Evaluation of DEM Produced by using KOMPSAT-5 InSAR Image (KOMPSAT 5호 InSAR영상을 이용한 DEM제작 정확도 평가)

  • Han, Seung-Hee
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.39-47
    • /
    • 2017
  • The SAR payload of the KOMPSAT-5 is equipped with an X-band (9.66GHz) microwave-based sensor. Especially, since it has a fixed antenna that can be electronically steered with respect to the azimuth and elevation planes, various applications are expected. This study evaluates the production performance and the accuracy of the DEM by producing DEM using the HR and UH mode images of KOMPSAT-5. To evaluate the production performance of the DEM, the sensitivity of DEM was assessed through a baseline analysis and $2{\pi}$ ambiguity; it was found to have good production performance. In addition, to evaluate the accuracy of the produced DEM, 30 check points were compared with SRTM data. As a result, STDEV ${\pm}15-20m$ accuracy was obtained. If the accuracy of the DEM is improved by adjusting the parameters of the filtering method or phase unwrapping method in the future, it will be possible to widely use the KOMPSAT-5 image for environmental and disaster monitoring.

DEVELOPMENT OF PRECISION ATTITUDE DETERMINATION SYSTEM FOR KOMPSAT-2

  • Yoon Jae-Cheol;Shin Dongseok;Lee Hungu;Lee Young-Ran;Lee Hyunjae;Bang Hyo-Choong;Cheon Yee-Jin;Shin Jae-Min;Moon Hong-Youl;Lee Sang-Ryool;Jeun Gab-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.296-299
    • /
    • 2004
  • KARI precision attitude determination system has been developed for high accurate geo-coding of KOMPSAT-2 image. Sensor data from two star trackers and a IRU are used as measurement and dynamic data. Sensor data from star tracker are composed of QUEST and unit vector filter. Filter algorithms consists of extended Kalman filter, unscented Kalman filter, and least square batch filter. The type of sensor data and filter algorithm can be chosen by user options. Estimated parameters are Euler angle from 12000 frame to optical bench frame, gyro drift rate bias, gyro scale factor, misalignment angle of star tracker coordinate frame with respect to optical bench frame, and misalignment angle of gyro coordinate frame with respect to optical bench frame. In particular, ground control point data can be applied for estimating misalignment angle of star tracker coordinate frame. Through the simulation, KPADS is able to satisfy the KOMPSAT-2 mission requirement in which geo-location accuracy of image is 80 m (CE90) without ground control point.

  • PDF

DEM Generation from Kompsat-2 Images and Accuracy Comparison by Using Common Software (Kompsat-2 영상의 DEM 생성 및 상용 소프트웨어와의 성능평가)

  • Rhee, Soo-Ahm;Jeong, Jae-Hoon;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.359-366
    • /
    • 2009
  • Research of accurate DEM generation using images of Kompsat-2 is not enough. This paper focused on generation of accurate Kompsat-2 DEM and comparison with DEM from common software like PCI Geomatica and ENVI. For Kompsat-2 DEM generation, we applied orbit-attitude sensor modeling technique and matching method based on epipolarity and image geometry. The comparison of performance with each commercial programs made a qualitative experiment through naked eyes and a quantitative experiment with USGS DTED. The accuracy was judged by the average absolute error and RMS error with DIED. The result of comparison experiment, we could confirm that the method used in the experiment showed much better performance than DEM made from other commercial programs in most of images.

Development of TPF Generation SIW for KOMPSAT-2 X-Band Antenna Motion Control

  • Kang C. H.;Park D. J.;Seo S. B.;Koo I. H.;Ahn S. I.;Kim E. K.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.485-488
    • /
    • 2005
  • The 2nd KOrea Multi-Purpose Satellite (KOMPSAT -2) has been developed by Korea Aerospace Research Institute (KARI) since 2000. Multi Spectral Camera (MSC) is the payload for KOMPSAT -2, which will provide the observation imagery around Korean peninsula with high resolution. KOMPSAT-2 has adopted X-band Tracking System (XTS) for transmitting earth observation data to ground station. For this, data which describes and controls the pre-defined motion of each on-board X-Band antenna in XTS, must be transmitted to the spacecraft as S-Band command and it is called as Tracking Parameter Files (TPF). In this paper, the result of the development of TPF Generation S/W for KOMPSAT-2 X-Band Antenna Motion Control.

  • PDF

THE INTERFACE CONFIGURATION OF OVERSEA STATIONS AND OPERATION PLAN FOR KOMPSAT-2 LEOP

  • Baek Hyun-Chul;Kim Hae-Dong;Ahn Sang-Il;Kim Eun-Kyou
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.557-560
    • /
    • 2005
  • The Korea Multi-Purpose SATellite-2 (KOMPSAT -2) will be launched into a circular sun synchronous orbit in Dec. 2005. For the mission operation of the KOMPSAT-2 satellite, KARl Ground Station (KGS) consists of the Mission Control Elements (MCE), Image Reception & Processing Elements (IRPE) and the overseas stations. For the oversea stations, the Kongsberg Satellite Services (KSAT) is the prime supplier of support service. KSAT has the capability to provide Tracking Telemetry and Commanding (TT&C) nominal, contingency and anomaly support for every single orbit for most polar orbiting satellites. Also KSAT provides nodal service through the network management functionality for all oversea ground stations. This paper describes the oversea stations and the support for Launch and nominal TT&C services for KOMPSAT-2 and the operation plan for KOMPSAT-2.

  • PDF

Covariance Analysis Study for KOMPSAT Attitude Determination System

  • Rhee, Seung-Wu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.70-80
    • /
    • 2000
  • The attitude knowledge error model is formulated for specifically KOMPSAT attitude determination system using the Lefferts/Markley/Shuster method, and the attitude determination(AD) error analysis is performed so as to investgate the on-board attitude determination capability of KOrea Multi-Purpose SATellite(KOMPSAT) using the covariance analysis method. Analysis results show there is almost no initial value effect on Attitude Determination (AD) error and the sensor noise effects on AD error are drastically decreased as is predicted because of the inherent characteristic of Kalman filter structure. However, it shows that the earth radiance effect of IR-sensor(earth sensor) and the bias effects of both IR-sensor and fine sun sensor are the dominant factors degrading AD error and gyro rate bias estimate error in AD system. Analysis results show that the attitude determination errors of roll, pitch and yaw axes are 0.056, 0.092 and 0.093 degrees, respectively. These numbers are smaller than the required values for the normal mission of KOMPSAT. Also, the selected on-orbit data of KOMPSAT is presented to demonstrate the designed AD system.

  • PDF

A Study on the Analysis of Geometric Accuracy of Tilting Angle Using KOMPSAT-l EOC Images

  • Seo, Doo-Chun;Lim, Hyo-Suk
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.53-57
    • /
    • 2003
  • As the Korea Multi-Purpose Satellite-I (KOMPSAT-1) satellite can roll tilt up to $\pm$45$^{\circ}$, we have analyzed some KOMPSAT-1 EOC images taken at different tilt angles for this study. The required ground coordinates for bundle adjustment and geometric accuracy are obtained from the digital map produced by the National Geography Institution, at a scale of 1:5,000. Followings are the steps taken for the tilting angle of KOMPSAT-1 to be present in the evaluation of geometric accuracy of each different stereo image data: Firstly, as the tilting angle is different in each image, the characteristic of satellite dynamic must be determined by the sensor modeling. Then the best sensor modeling equation should be determined. The result of this research, the difference between the RMSE values of individual stereo images is mainly due to quality of image and ground coordinates instead of tilt angle. The bundle adjustment using three KOMPSAT-1 stereo pairs, first degree of polynomials for modeling the satellite position, were sufficient.

  • PDF

KOMPSAT SATELLITE LAUNCH AND DEPLOYMENT OPERATIONS

  • Baek, Myung-Jin;Chang, Young-Keun;Lee, Jin-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.199-208
    • /
    • 1999
  • In this paper, KOMPSAT satellite launch and deployment operations are discussed. The U.S. Taurus launch vehicle delivers KOMPSAT satellite into the mission orbit directly. Launch and deployment operations is monitored and controlled by several international ground stations including Korean Ground Station (KGS). After separation from launch vehicle, KOMPSAT spacecraft deploys solar array by on-board autonomous stored commands without ground inter-vention and stabilizes the satellite such that solar arrays point to the sun. Autonomous ground communication is designed for KOMPSAT for the early orbit ground contact. KOMPSAT space-craft has capability of handing contingency situation by on-board fault management design to retry deployment sequence.

  • PDF

Operation of the Radio Occultation Mission in KOMPSAT-5

  • Choi, Man-Soo;Lee, Woo-Kyoung;Cho, Sung-Ki;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.345-352
    • /
    • 2010
  • Korea multi-purpose satellite-5 (KOMPSAT-5) is a low earth orbit (LEO) satellite scheduled to be launched in 2010. To satisfy the precision orbit determination (POD) requirement for a high resolution synthetic aperture radar image of KOMPSAT-5, KOMPSAT-5 has atmosphere occultation POD (AOPOD) system which consists of a space-borne dual frequency global positioning system (GPS) receiver and a laser retro reflector array. A space-borne dual frequency GPS receiver on a LEO satellite provides position data for the POD and radio occultation data for scientific applications. This paper describes an overview of AOPOD system and operation concepts of the radio occultation mission in KOMPSAT-5. We showed AOPOD system satisfies the requirements of KOMPSAT-5 in performance and stability.

ELECTROMAGNETIC COMPATIBILITY DESIGN FOR KOMPSAT-2

  • Lee, Na-Young;Lee, Jin-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.4
    • /
    • pp.383-392
    • /
    • 2003
  • It is quite essential that requirements allocation and analysis would be done for the electromagnetic compatibility (EMC) of all units when designing a satellite. Although KOMPSAT-2 inherits relatively large portions of the electrical designs from KOMPSAT-1, it has a new instrument and different combinations of sensors and actuators as well as their driving circuitry. Many requirements for the electromagnetic compatibility were modified and newly allocated for KOMPSAT-2. Naturally, they must be justified through analyses from the early stage of the program. In this paper, the EMC compatibility requirements for KOMPSAT2 are presented and verified for their suitability. In addition, some results, which were obtained from various analyses, are presented and discussed.