• 제목/요약/키워드: Kolmogorov's zero-one law

검색결과 1건 처리시간 0.014초

Equivalence-Singularity Dichotomies of Gaussian and Poisson Processes from The Kolmogorov's Zero-One Law

  • Park, Jeong-Soo
    • Journal of the Korean Statistical Society
    • /
    • 제23권2호
    • /
    • pp.367-378
    • /
    • 1994
  • Let P and Q be probability measures of a measurable space $(\Omega, F)$, and ${F_n}_{n \geq 1}$ be a sequence of increasing sub $\sigma$-fields which generates F. For each $n \geq 1$, let $P_n$ and $Q_n$ be the restrictions of P and Q to $F_n$, respectively. Under the assumption that $Q_n \ll P_n$ for every $n \geq 1$, a zero-one condition is derived for P and Q to have the dichotomy, i.e., either $Q \ll P$ or $Q \perp P$. Then using this condition and the Kolmogorov's zero-one law, we give new and simple proofs of the dichotomy theorems for a pair of Gaussian measures and Poisson processes with examples.

  • PDF