• Title/Summary/Keyword: Kohonen Self-Organizing Feature Map

Search Result 26, Processing Time 0.025 seconds

Adaptive Self Organizing Feature Map (적응적 자기 조직화 형상지도)

  • Lee , Hyung-Jun;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.83-90
    • /
    • 1994
  • In this paper, we propose a new learning algorithm, ASOFM(Adaptive Self Organizing Feature Map), to solve the defects of Kohonen's Self Organiaing Feature Map. Kohonen's algorithm is sometimes stranded on local minima for the initial weights. The proposed algorithm uses an object function which can evaluate the state of network in learning and adjusts the learning rate adaptively according to the evaluation of the object function. As a result, it is always guaranteed that the state of network is converged to the global minimum value and it has a capacity of generalized learning by adaptively. It is reduce that the learning time of our algorithm is about $30\%$ of Kohonen's.

  • PDF

A Study of Data Mining Techniques in Bankruptcy Prediction (데이터 마이닝 기법의 기업도산예측 실증분석)

  • Lee, Kidong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.2
    • /
    • pp.105-127
    • /
    • 2003
  • In this paper, four different data mining techniques, two neural networks and two statistical modeling techniques, are compared in terms of prediction accuracy in the context of bankruptcy prediction. In business setting, how to accurately detect the condition of a firm has been an important event in the literature. In neural networks, Backpropagation (BP) network and the Kohonen self-organizing feature map, are selected and compared each other while in statistical modeling techniques, discriminant analysis and logistic regression are also performed to provide performance benchmarks for the neural network experiment. The findings suggest that the BP network is a better choice among the data mining tools compared. This paper also identified some distinctive characteristics of Kohonen self-organizing feature map.

Improved Speed of Convergence in Self-Organizing Map using Dynamic Approximate Curve (동적 근사곡선을 이용한 자기조직화 지도의 수렴속도 개선)

  • Kil, Min-Wook;Kim, Gui-Joung;Lee, Geuk
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.4
    • /
    • pp.416-423
    • /
    • 2000
  • The existing self-organizing feature map of Kohonen has weakpoint that need too much input patterns in order to converse into the learning rate and equilibrium state when it trains. Making up for the current weak point, B.Bavarian suggested the method of that distributed the learning rate such as Gaussian function. However, this method has also a disadvantage which can not achieve the right self-organizing. In this paper, we proposed the method of improving the convergence speed and the convergence rate of self-organizing feature map converting the Gaussian function into dynamic approximate curve used in when trains the self-organizing feature map.

  • PDF

Improved Rate of Convergence in Kohonen Network using Dynamic Gaussian Function (동적 가우시안 함수를 이용한 Kohonen 네트워크 수렴속도 개선)

  • Kil, Min-Wook;Lee, Geuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.4
    • /
    • pp.204-210
    • /
    • 2002
  • The self-organizing feature map of Kohonen has disadvantage that needs too much input patterns in order to converge into the equilibrium state when it trains. In this paper we proposed the method of improving the convergence speed and rate of self-organizing feature map converting the interaction set into Dynamic Gaussian function. The proposed method Provides us with dynamic Properties that the deviation and width of Gaussian function used as an interaction function are narrowed in proportion to learning times and learning rates that varies according to topological position from the winner neuron. In this Paper. we proposed the method of improving the convergence rate and the degree of self-organizing feature map.

  • PDF

Korean Phoneme Recognition using Modified Self Organizing Feature Map (수정된 자기 구조화 특징 지도를 이용한 한국어 음소 인식)

  • Choi, Doo-Il;Lee, Su-Jin;Park, Sang-Hui
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.11
    • /
    • pp.38-43
    • /
    • 1991
  • In order to cluster the Input pattern neatly, some neural network modified from Kohonen's self organizing feature map is introduced and Korean phoneme recognition experiments are performed using the modified self organizing feature map(MSOFM) and the auditory model.

  • PDF

Self-Organizing Feature Map with Constant Learning Rate and Binary Reinforcement (일정 학습계수와 이진 강화함수를 가진 자기 조직화 형상지도 신경회로망)

  • 조성원;석진욱
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.1
    • /
    • pp.180-188
    • /
    • 1995
  • A modified Kohonen's self-organizing feature map (SOFM) algorithm which has binary reinforcement function and a constant learning rate is proposed. In contrast to the time-varing adaptaion gain of the original Kohonen's SOFM algorithm, the proposed algorithm uses a constant adaptation gain, and adds a binary reinforcement function in order to compensate for the lowered learning ability of SOFM due to the constant learning rate. Since the proposed algorithm does not have the complicated multiplication, it's digital hardware implementation is much easier than that of the original SOFM.

  • PDF

The Design of Self-Organizing Map Using Pseudo Gaussian Function Network

  • Kim, Byung-Man;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.42.6-42
    • /
    • 2002
  • Kohonen's self organizing feature map (SOFM) converts arbitrary dimensional patterns into one or two dimensional arrays of nodes. Among the many competitive learning algorithms, SOFM proposed by Kohonen is considered to be powerful in the sense that it not only clusters the input pattern adaptively but also organize the output node topologically. SOFM is usually used for a preprocessor or cluster. It can perform dimensional reduction of input patterns and obtain a topology-preserving map that preserves neighborhood relations of the input patterns. The traditional SOFM algorithm[1] is a competitive learning neural network that maps inputs to discrete points that are called nodes on a lattice...

  • PDF

A Codebook Design for Vector Quantization Using a Neural Network (신경망을 이용한 벡터 양자화의 코드북 설계)

  • 주상현;원치선;신재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.2
    • /
    • pp.276-283
    • /
    • 1994
  • Using a neural network for vector quantization, we can expect to have better codebook design algorithm for its adaptive process. Also, the designed codebook puts the codewords in order by its self-organizing characteristics, which makes it possible to partially search the codebook for real time process. To exploit these features of the neural network, in this paper, we propose a new codebook design algorithm that modified the KSFM(Kohonen`s Self-organizing Feature Map) and then combines the K-means algorithm. Experimental results show the performance improvment and the ability of the partical seach of the codebook for the real time process.

  • PDF

Machine-Part Cell Formation based on Kohonen화s Self Organizing Feature Map (Kohonen 자기조직화 map 에 기반한 기계-부품군 형성)

  • ;;山川 烈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.315-318
    • /
    • 1996
  • The machine-part cell formation means the grouping of similar parts and similar machines into families in order to minimize bottleneck machines, bottleneck parts, and inter-cell part movements in cellular manufacturing systems and flexible manufacturing systems. The cell formation problem is knows as a kind of NP complete problems. This paper briefly introduces the cell-formation problem and proposes a cell formation method based on the Kohonen's self-organizing feature map which is a neural network model. It also shows some experiment results using the proposed method. The proposed method can be easily applied to the cell formation problem compared to other meta-heuristic based methods. In addition, it can be used to solve large-scale cell formation problems.

  • PDF

A self creating and organizing neural network (자기 분열 및 구조화 신경 회로망)

  • 최두일;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.768-772
    • /
    • 1991
  • The Self Creating and organizing (SCO) is a new architecture and one of the unsupervized learning algorithm for the artificial neural network. SCO begins with only one output node which has a sufficiently wide response range, and the response ranges of all the nodes decrease with time. Self Creating and Organizing Neural Network (SCONN) decides automatically whether adapting the weights of existing node or creating a new node. It is compared to the Kohonen's Self Organizing Feature Map (SOFM). The results show that SCONN has lots of advantages over other competitive learning architecture.

  • PDF