• 제목/요약/키워드: Kohonen Self-Organizing Feature Map

검색결과 26건 처리시간 0.023초

적응적 자기 조직화 형상지도 (Adaptive Self Organizing Feature Map)

  • 이형준;김순협
    • 한국음향학회지
    • /
    • 제13권6호
    • /
    • pp.83-90
    • /
    • 1994
  • 본 논문에서는 코호넨(Kohonen)의 SOFM (Self-Organizing Feature Map) 알고리즘의 단점을 해결하기 위한 새로운 학습 알고리즘 ASOFM(Adaptive Self-Organized Feature Map)을 제안한다. 코호넨의 학습 알고리즘은 초기화된 연결 벡터에 대하여 극소점에 빠지는 경우도 있다. 그러나 제안된 알고리즘에서는 학습과정중에 네트워크의 상태를 평가할 수 있는 목적함수(object function)을 사용하였고, 이 함수의 출력에 따라 학습의 각 시점에서 적응적으로 학습률의 재조정이 가능하였다. 이 결과, 네트워크의 상태가 최소점에 수렴함이 보증 되고 학습률의 적응성에 의해 임의의 학습패턴에 대한 학습의 일반화 능력이 보장되었다. 또한 제안된 알고리즘은 코호넨의 알고리즘보다 약 $70\%$이상의 학습시간을 단축한다.

  • PDF

데이터 마이닝 기법의 기업도산예측 실증분석 (A Study of Data Mining Techniques in Bankruptcy Prediction)

  • Lee, Kidong
    • 한국경영과학회지
    • /
    • 제28권2호
    • /
    • pp.105-127
    • /
    • 2003
  • In this paper, four different data mining techniques, two neural networks and two statistical modeling techniques, are compared in terms of prediction accuracy in the context of bankruptcy prediction. In business setting, how to accurately detect the condition of a firm has been an important event in the literature. In neural networks, Backpropagation (BP) network and the Kohonen self-organizing feature map, are selected and compared each other while in statistical modeling techniques, discriminant analysis and logistic regression are also performed to provide performance benchmarks for the neural network experiment. The findings suggest that the BP network is a better choice among the data mining tools compared. This paper also identified some distinctive characteristics of Kohonen self-organizing feature map.

동적 근사곡선을 이용한 자기조직화 지도의 수렴속도 개선 (Improved Speed of Convergence in Self-Organizing Map using Dynamic Approximate Curve)

  • 길민욱;김귀정;이극
    • 한국멀티미디어학회논문지
    • /
    • 제3권4호
    • /
    • pp.416-423
    • /
    • 2000
  • 기존 Kohonen의 자기조직화 지도(self-organizing feature map)는 학습시 많은 입력 패턴이 필요하며 이에 따른 학습 시간 역시 증가하는 단점이 있다. 이러한 단점을 보완하기 위해 B. Bavarian은 위상학적 위치에 따라 각기 다른 학습률(learning rate)을 갖도록 하였으나 자기조직화가 정밀하게 되지 않는 단점을 갖고 있다. 본 논문에서는 자기조직화 지도의 학습시 계산량이 많은 가우시안 함수를 근사곡선(approximate curve)으로 변형하여 수렴속도를 향상시켰고 학습 횟수에 따라 근사곡선의 폭을 동적으로 변화시킴으로써 자기조직화지도의 수렴도를 개선하였다.

  • PDF

동적 가우시안 함수를 이용한 Kohonen 네트워크 수렴속도 개선 (Improved Rate of Convergence in Kohonen Network using Dynamic Gaussian Function)

  • 길민욱;이극
    • 한국컴퓨터정보학회논문지
    • /
    • 제7권4호
    • /
    • pp.204-210
    • /
    • 2002
  • 자기조직화 지도(self-organizing feature map)는 학습시 수렴하기 위하여 많은 입력패턴을 필요로 하는 단점이 있다. 본 논문에서는 자기조직화 지도 학습시 학습률이 일정한 이웃 상호작용 집합을 동적 가우시안 함수로 변환하여 수렴속도와 수렴도를 개선할 수 있는 방법을 제안한다. 제안한 방법은 이웃 상호작용 함수로 사용된 가우시안 함수의 편차와 폭을 학습 회수에 따라 감소하는 동적 성질과 승자 뉴런으로부터의 위상학적 위치에 따라 각기 다른 학습률을 갖도록 하였다. 따라서 본 논문에서는 자기조직화 지도의 수렴속도와 수렴도를 향상시켰다.

  • PDF

수정된 자기 구조화 특징 지도를 이용한 한국어 음소 인식 (Korean Phoneme Recognition using Modified Self Organizing Feature Map)

  • 최두일;이수진;박상희
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1991년도 추계학술대회
    • /
    • pp.38-43
    • /
    • 1991
  • In order to cluster the Input pattern neatly, some neural network modified from Kohonen's self organizing feature map is introduced and Korean phoneme recognition experiments are performed using the modified self organizing feature map(MSOFM) and the auditory model.

  • PDF

일정 학습계수와 이진 강화함수를 가진 자기 조직화 형상지도 신경회로망 (Self-Organizing Feature Map with Constant Learning Rate and Binary Reinforcement)

  • 조성원;석진욱
    • 전자공학회논문지B
    • /
    • 제32B권1호
    • /
    • pp.180-188
    • /
    • 1995
  • A modified Kohonen's self-organizing feature map (SOFM) algorithm which has binary reinforcement function and a constant learning rate is proposed. In contrast to the time-varing adaptaion gain of the original Kohonen's SOFM algorithm, the proposed algorithm uses a constant adaptation gain, and adds a binary reinforcement function in order to compensate for the lowered learning ability of SOFM due to the constant learning rate. Since the proposed algorithm does not have the complicated multiplication, it's digital hardware implementation is much easier than that of the original SOFM.

  • PDF

The Design of Self-Organizing Map Using Pseudo Gaussian Function Network

  • Kim, Byung-Man;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.42.6-42
    • /
    • 2002
  • Kohonen's self organizing feature map (SOFM) converts arbitrary dimensional patterns into one or two dimensional arrays of nodes. Among the many competitive learning algorithms, SOFM proposed by Kohonen is considered to be powerful in the sense that it not only clusters the input pattern adaptively but also organize the output node topologically. SOFM is usually used for a preprocessor or cluster. It can perform dimensional reduction of input patterns and obtain a topology-preserving map that preserves neighborhood relations of the input patterns. The traditional SOFM algorithm[1] is a competitive learning neural network that maps inputs to discrete points that are called nodes on a lattice...

  • PDF

신경망을 이용한 벡터 양자화의 코드북 설계 (A Codebook Design for Vector Quantization Using a Neural Network)

  • 주상현;원치선;신재호
    • 한국통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.276-283
    • /
    • 1994
  • 백터양자와를 위한 신경망을 사용은 그것의 적응적 설계 특성으로 더 좋은 코드북을 설계할 수 있을 것으로 기대되며, 또한 설계된 코드북의 코드워드는 자동정렬되어 실시간 탐색을 가능케 한다. 신경망의 이러한 장점을 살리기 위하여 본 논문에서는 KSFM(Kohonen`s Self-organizing Feature Map)을 수정하고, K-means 알고리즘을 결함한 새로운 코드북 설계 할고리즘을 제안한다. 실험결과로 부터 제안된 알고리즘의 성능향상과 실시간 처리를 위한 코드북의 부분탐색 가능성을 확인하였다.

  • PDF

Kohonen 자기조직화 map 에 기반한 기계-부품군 형성 (Machine-Part Cell Formation based on Kohonen화s Self Organizing Feature Map)

  • 이경미;이건명
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.315-318
    • /
    • 1996
  • The machine-part cell formation means the grouping of similar parts and similar machines into families in order to minimize bottleneck machines, bottleneck parts, and inter-cell part movements in cellular manufacturing systems and flexible manufacturing systems. The cell formation problem is knows as a kind of NP complete problems. This paper briefly introduces the cell-formation problem and proposes a cell formation method based on the Kohonen's self-organizing feature map which is a neural network model. It also shows some experiment results using the proposed method. The proposed method can be easily applied to the cell formation problem compared to other meta-heuristic based methods. In addition, it can be used to solve large-scale cell formation problems.

  • PDF

자기 분열 및 구조화 신경 회로망 (A self creating and organizing neural network)

  • 최두일;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.768-772
    • /
    • 1991
  • The Self Creating and organizing (SCO) is a new architecture and one of the unsupervized learning algorithm for the artificial neural network. SCO begins with only one output node which has a sufficiently wide response range, and the response ranges of all the nodes decrease with time. Self Creating and Organizing Neural Network (SCONN) decides automatically whether adapting the weights of existing node or creating a new node. It is compared to the Kohonen's Self Organizing Feature Map (SOFM). The results show that SCONN has lots of advantages over other competitive learning architecture.

  • PDF