• Title/Summary/Keyword: Kohonen Map

Search Result 74, Processing Time 0.026 seconds

Supervised Kohonen Feature Map Using Higher Order Neuron (고차 뉴런을 이용한 KOHONEN의 자기 조직화 맵)

  • Jung, Jong-Soo;Hagiwara, Massfume
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2656-2659
    • /
    • 2001
  • 본 논문은 교사 있는 학습기의 Kohonen Feature Map에 고차 뉴런을 도입, 고차 뉴런을 이용한 Kohonen의 자기 조직화 맵을 제안한다. 일반적인 Kohonen Feature Map의 특징은 입력신호를 받아 출력 면(Kohonen Feature Map) 내의 특정한 위치 주위에 집중하는 메커니즘으로 즉, 국소집중 반응을 구하는 구조이다. 본 논문에서는 종래형의 Kohonen Feature Map의 특징을 보유하며 교사 있는 학습기의 Kohonen Feature Map에 고차 뉴런을 도입하여 국소집중반응 및 특징 축출이 용이하도록 네트워크 구조를 개선한 것이다. 특히, 일차 뉴런의 문제점인 비선형 분리 문제에 대하여 교사 있는 학습기의 Kohonen Feature Map의 입력층에 고차 뉴런을 도입함으로 비선형 분리 가능한 형태의 네트워크 구조로 형성하였다. 그러나, 일반적인 고차 뉴런의 문제점을 보안하기 위해 본 논문에서는 오직 2차 뉴런만을 생성하였으며 중복되는 뉴런을 최대한 억제하였다. 본 제안 모델의 특성을 살펴보기 위해 XOR문제와 20개의 Alphabet을 식별하는 패턴인식 시뮬레이션을 했으며, 본 제안 모델의 범화능력을 알아보기 위하여 Mirror Symmetry를 사용하여 계산기 시뮬레이션을 했다. 그 결과, 본 제안 모델이 종래형의 네트워크 구조보다 뛰어난 인식률을 얻을 수 있었다.

  • PDF

Using Higher Order Neuron on the Supervised Learning Machine of Kohonen Feature Map (고차 뉴런을 이용한 교사 학습기의 Kohonen Feature Map)

  • Jung, Jong-Soo;Hagiwara, Masafumi
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.277-282
    • /
    • 2003
  • In this paper we propose Using Higher Order Neuron on the Supervised Learning Machine of the Kohonen Feature Map. The architecture of proposed model adopts the higher order neuron in the input layer of Kohonen Feature Map as a Supervised Learning Machine. It is able to estimate boundary on input pattern space because or the higher order neuron. However, it suffers from a problem that the number of neuron weight increases because of the higher order neuron in the input layer. In this time, we solved this problem by placing the second order neuron among the higher order neuron. The feature of the higher order neuron can be mapped similar inputs on the Kohonen Feature Map. It also is the network with topological mapping. We have simulated the proposed model in respect of the recognition rate by XOR problem, discrimination of 20 alphabet patterns, Mirror Symmetry problem, and numerical letters Pattern Problem.

Validity Study of Kohonen Self-Organizing Maps

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.507-517
    • /
    • 2003
  • Self-organizing map (SOM) has been developed mainly by T. Kohonen and his colleagues as a unsupervised learning neural network. Because of its topological ordering property, SOM is known to be very useful in pattern recognition and text information retrieval areas. Recently, data miners use Kohonen´s mapping method frequently in exploratory analyses of large data sets. One problem facing SOM builder is that there exists no sensible criterion for evaluating goodness-of-fit of the map at hand. In this short communication, we propose valid evaluation procedures for the Kohonen SOM of any size. The methods can be used in selecting the best map among several candidates.

Principal Components Self-Organizing Map PC-SOM (주성분 자기조직화 지도 PC-SOM)

  • 허명회
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.321-333
    • /
    • 2003
  • Self-organizing map (SOM), a unsupervised learning neural network, has been developed by T. Kohonen since 1980's. Main application areas were pattern recognition and text retrieval. Because of that, it has not been spread to statisticians until late. Recently, SOM's are frequently drawn in data mining fields. Kohonen's SOM, however, needs improvements to become a statistician's standard tool. First, there should be a good guideline as for the size of map. Second, an enhanced visualization mode is wanted. In this study, principal components self-organizing map (PC-SOM), a modification of Kohonen's SOM, is proposed to meet such needs. PC-SOM performs one-dimensional SOM during the first stage to decompose input units into node weights and residuals. At the second stage, another one-dimensional SOM is applied to the residuals of the first stage. Finally, by putting together two stages, one obtains two-dimensional SOM. Such procedure can be easily expanded to construct three or more dimensional maps. The number of grid lines along the second axis is determined automatically, once that of the first axis is given by the data analyst. Furthermore, PC-SOM provides easily interpretable map axes. Such merits of PC-SOM are demonstrated with well-known Fisher's iris data and a simulated data set.

Adaptive Self Organizing Feature Map (적응적 자기 조직화 형상지도)

  • Lee , Hyung-Jun;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.83-90
    • /
    • 1994
  • In this paper, we propose a new learning algorithm, ASOFM(Adaptive Self Organizing Feature Map), to solve the defects of Kohonen's Self Organiaing Feature Map. Kohonen's algorithm is sometimes stranded on local minima for the initial weights. The proposed algorithm uses an object function which can evaluate the state of network in learning and adjusts the learning rate adaptively according to the evaluation of the object function. As a result, it is always guaranteed that the state of network is converged to the global minimum value and it has a capacity of generalized learning by adaptively. It is reduce that the learning time of our algorithm is about $30\%$ of Kohonen's.

  • PDF

Short Term Load Forecasting Using The Kohonen Neural Network (코호넨 신경망을 이용한 단기 전력수요 예측)

  • Cho, Sung-Woo;Hwang, Kab-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.447-449
    • /
    • 1996
  • This paper describes an algorithm for short term load forecasting using the Kohonen neural network. Single layer Kohonen neural network presents a lot of advantageous features for practical application. It takes less training time compared to other networks such as BP network, and moreover, its self organized feature can amend the distorted data. The originality of proposed approach is to use a Kohonen map toclassify data representing load patterns and to use directly the information stored in the weight vectors of the Kohonen map to pridict the load. Proposed method was tested with KEPCO hourly record(1993-1995) show better forecasting results compared with conventional exponential smoothing method.

  • PDF

The Design of Self-Organizing Map Using Pseudo Gaussian Function Network

  • Kim, Byung-Man;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.42.6-42
    • /
    • 2002
  • Kohonen's self organizing feature map (SOFM) converts arbitrary dimensional patterns into one or two dimensional arrays of nodes. Among the many competitive learning algorithms, SOFM proposed by Kohonen is considered to be powerful in the sense that it not only clusters the input pattern adaptively but also organize the output node topologically. SOFM is usually used for a preprocessor or cluster. It can perform dimensional reduction of input patterns and obtain a topology-preserving map that preserves neighborhood relations of the input patterns. The traditional SOFM algorithm[1] is a competitive learning neural network that maps inputs to discrete points that are called nodes on a lattice...

  • PDF

Areal Image Clustering using Hybrid Kohonen Network (Hybrid Kohonen 네트워크에 의한 항공영상 클러스터링)

  • Lee, Kyunghee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.07a
    • /
    • pp.250-251
    • /
    • 2015
  • 본 논문에서는 자기 조직화 기능을 갖는 Kohonen의 SOM(Self organization map) 신경회로망과 주어지는 데이터에 따라 초기의 클러스터 개수를 설정하여 처리하는 수정된 K-Means 알고리즘을 결합한 Hybrid Kohonen Network 를 제안한다. 또한, 실제의 항공영상에 적용하여 고전적인 K-Means 알고리즘 및 고전적인 SOM 알고리즘보다 우수함을 보인다.

  • PDF

A Study of Data Mining Techniques in Bankruptcy Prediction (데이터 마이닝 기법의 기업도산예측 실증분석)

  • Lee, Kidong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.2
    • /
    • pp.105-127
    • /
    • 2003
  • In this paper, four different data mining techniques, two neural networks and two statistical modeling techniques, are compared in terms of prediction accuracy in the context of bankruptcy prediction. In business setting, how to accurately detect the condition of a firm has been an important event in the literature. In neural networks, Backpropagation (BP) network and the Kohonen self-organizing feature map, are selected and compared each other while in statistical modeling techniques, discriminant analysis and logistic regression are also performed to provide performance benchmarks for the neural network experiment. The findings suggest that the BP network is a better choice among the data mining tools compared. This paper also identified some distinctive characteristics of Kohonen self-organizing feature map.

Fast Thinning Algorithm based on Improved SOG($SOG^*$) (개선된 SOG 기반 고속 세선화 알고리즘($SOG^*$))

  • Lee, Chan-Hui;Jeong, Sun-Ho
    • The KIPS Transactions:PartB
    • /
    • v.8B no.6
    • /
    • pp.651-656
    • /
    • 2001
  • In this paper, we propose Improved Self-Organized Graph(Improved SOG:$SOG^*$)thinning method, which maintains the excellent thinning results of Self-organized graph(SOG) built from Self-Organizing features map and improves the performance of modified SOG using a new incremental learning method of Kohonen features map. In the experiments, this method shows the thinning results equal to those of SOG and the time complexity O((logM)3) superior to it. Therefore, the proposed method is useful for the feature extraction from digits and characters in the preprocessing step.

  • PDF