• 제목/요약/키워드: Kohonen

검색결과 165건 처리시간 0.023초

새로운 지도 경쟁 학습 알고리즘의 개발과 전력계통 과도안정도 해석에의 적용 (A New Supervised Competitive Learning Algorithm and Its Application to Power System Transient Stability Analysis)

  • 박영문;조홍식;김광원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.591-593
    • /
    • 1995
  • Artificial neural network based pattern recognition method is one of the most probable candidate for on-line power system transient stability analysis. Especially, Kohonen layer is an adequate neural network for the purpose. Each node of Kehonen layer competes on the basis of which of them has its clustering center closest to an input vector. This paper discusses Kohonen's LVQ(Learning Victor Quantization) and points out a defection of the algorithm when applied to the transient stability analysis. Only the clustering centers located near the decision boundary of the stability region is needed for the stability criterion and the centers far from the decision boundary are redundant. This paper presents a new algorithm ratted boundary searching algorithm II which assigns only the points that are near the boundary in an input space to nodes or Kohonen layer as their clustering centers. This algorithm is demonstrated with satisfaction using 4-generator 6-bus sample power system.

  • PDF

전력부하의 유형별 단기부하예측에 신경회로망의 적용 (Application of Neural Networks to Short-Term Load Forecasting Using Electrical Load Pattern)

  • 박후식;문경준;김형수;황지현;이화석;박준호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권1호
    • /
    • pp.8-14
    • /
    • 1999
  • This paper presents the methods of short-term load forecasting Kohonen neural networks and back-propagation neural networks. First, historical load data is divided into 5 patterns for the each seasonal data using Kohonen neural networks and using these results, load forecasting neural network is used for next day hourly load forecasting. Next day hourly load of weekdays and weekend except holidays are forecasted. For load forecasting in summer, max-temperature and min-temperature data as well as historical hourly load date are used as inputs of load forecasting neural networks for a better forecasting accuracy. To show the possibility of the proposed method, it was tested with hourly load data of Korea Electric Power Corporation(1994-95).

  • PDF

Algorithms to measure carbonation depth in concrete structures sprayed with a phenolphthalein solution

  • Ruiz, Christian C.;Caballero, Jose L.;Martinez, Juan H.;Aperador, Willian A.
    • Advances in concrete construction
    • /
    • 제9권3호
    • /
    • pp.257-265
    • /
    • 2020
  • Many failures of concrete structures are related to steel corrosion. For this reason, it is important to recognize how the carbonation can affect the durability of reinforced concrete structures. The repeatability of the carbonation depth measure in a specimen of concrete sprayed with a phenolphthalein solution is consistently low whereby it is necessary to have an impartial method to measure the carbonation depth. This study presents two automatic algorithms to detect the non-carbonated zone in concrete specimens. The first algorithm is based solely on digital processing image (DPI), mainly morphological and threshold techniques. The second algorithm is based on artificial intelligence, more specifically on an array of Kohonen networks, but also using some DPI techniques to refine the results. Moreover, another algorithm was developed with the purpose of measure the carbonation depth from the image obtained previously.

Expert System for Fault Diagnosis of Transformer

  • Kim, Jae-Chul;Jeon, Hee-Jong;Kong, Seong-Gon;Yoon, Yong-Han;Choi, Do-Hyuk;Jeon, Young-Jae
    • 한국지능시스템학회논문지
    • /
    • 제7권1호
    • /
    • pp.45-53
    • /
    • 1997
  • This paper presents hybrid expert system for diagnosis of electric power transformer faults. The expert system diagnose and detect faults in oil-filled power transformers based on dissolved gas analysis. As the preprocessing stage, fuzzy information theory is used to manage the uncertainty in transformer fault diagnosis using dissolved gas analysis. The Kohonen neural network takes the interim results by applying fuzzy informations theory as inputs, and performs the transformer fault diagnosis. The Proposed system tested gas records of power transformers from Korea Electric Power Corporation to verify the diagnosis performance of transformer faults.

  • PDF

신경회로망을 이용한 고주파 전기 저항 용접 파이프의 비드 형상 분류 (A Bead Shape Classification Method using Neural Network in High Frequency Electric Resistance Welding)

  • Ko, K.W.;Kim, J.H.;Kong, W.I.
    • 한국정밀공학회지
    • /
    • 제12권9호
    • /
    • pp.86-94
    • /
    • 1995
  • Bead shape in high frequency electric resistance (HER) pipe welding gives useful information on judging current welding conditon. In most welding process, heat input is controlled by skilled operators observing color and shape of bead. In this paper, a visual monitoring system is designed to observe bead shape in HERW pipe welding process by using structured light beam and a C.I.D(Charge injection device) camera. To avoid some difficul- ties arising in extracting stable features of stripe pattern and classifying the extracted features, Kohonen neural network is used to classify such bead shapes. The experimental results show accurate classification performance of the proposed method.

  • PDF

자기조직화 지도를 위한 베이지안 학습 (Bayesian Learning for Self Organizing Maps)

  • 전성해;전홍석;황진수
    • 응용통계연구
    • /
    • 제15권2호
    • /
    • pp.251-267
    • /
    • 2002
  • Kohonen이 제안한 자기조직화 지도(Self Organizing Maps : SOM)는 매우 빠른 신경망 모형이다. 하지만 다른 신경망 모형과 마찬가지로 학습 결과에 대한 명확한 규칙을 제시하지 못할 뿐만 아니라 지역적 최적값으로 빠지는 경우가 종종 있다. 본 논문에서는 이러한 자기조직화 지도의 모형에 대한 설명력을 부여하고 전역 최적값으로 수렴할 수 있는 예측 성능을 갖는 모형으로서 자율학습 신경망에 베이지안 추론을 결합한 자기조직화 지도를 위한 베이지안 학습(Bayesian Learning for Self Organizing Maps ; BLSOM)을 제안한다. 이 방법은 기존의 자기조직화 지도가 지역적 해에 머물러 있는 것에 비해서 언제든지 전역적 해로 수렴함이 실험을 통하여 밝혀졌다.

신경망을 이용한 벡터 양자화의 코드북 설계 (A Codebook Design for Vector Quantization Using a Neural Network)

  • 주상현;원치선;신재호
    • 한국통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.276-283
    • /
    • 1994
  • 백터양자와를 위한 신경망을 사용은 그것의 적응적 설계 특성으로 더 좋은 코드북을 설계할 수 있을 것으로 기대되며, 또한 설계된 코드북의 코드워드는 자동정렬되어 실시간 탐색을 가능케 한다. 신경망의 이러한 장점을 살리기 위하여 본 논문에서는 KSFM(Kohonen`s Self-organizing Feature Map)을 수정하고, K-means 알고리즘을 결함한 새로운 코드북 설계 할고리즘을 제안한다. 실험결과로 부터 제안된 알고리즘의 성능향상과 실시간 처리를 위한 코드북의 부분탐색 가능성을 확인하였다.

  • PDF

Recognize Handwritten Urdu Script Using Kohenen Som Algorithm

  • Khan, Yunus;Nagar, Chetan
    • International Journal of Ocean System Engineering
    • /
    • 제2권1호
    • /
    • pp.57-61
    • /
    • 2012
  • In this paper we use the Kohonen neural network based Self Organizing Map (SOM) algorithm for Urdu Character Recognition. Kohenen NN have more efficient in terms of performance as compare to other approaches. Classification is used to recognize hand written Urdu character. The number of possible unknown character is reducing by pre-classification with respect to subset of the total character set. So the proposed algorithm is attempt to group similar character. Members of pre-classified group are further analyzed using a statistical classifier for final recognition. A recognition rate of around 79.9% was achieved for the first choice and more than 98.5% for the top three choices. The result of this paper shows that the proposed Kohonen SOM algorithm yields promising output and feasible with other existing techniques.

신경회로망을 이용한 단기전력부하 예측용 시스템 개발 (Development of Electric Load Forecasting System Using Neural Network)

  • 김형수;문경준;황기현;박준호;이화석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1522-1522
    • /
    • 1999
  • This paper proposes the methods of short-term load forecasting using Kohonen neural networks and back-propagation neural networks. Historical load data is divided into 5 patterns for the each seasonal data using Kohonen neural networks and using these results, load forecasting neural network is used for next day hourly load forecasting. Normal days and holidays are forecasted. For load forecasting in summer, max-, and min-temperature data are included in neural networks for a better forecasting accuracy. To show the possibility of the proposed method, it was tested with hourly load data of Korea Electric Power Corporation. (1993-1997)

  • PDF

Pattern Recognition of Long-term Ecological Data in Community Changes by Using Artificial Neural Networks: Benthic Macroinvertebrates and Chironomids in a Polluted Stream

  • Chon, Tae-Soo;Kwak, Inn-Sil;Park, Young-Seuk
    • The Korean Journal of Ecology
    • /
    • 제23권2호
    • /
    • pp.89-100
    • /
    • 2000
  • On community data. sampled in regular intervals on a long-term basis. artificial neural networks were implemented to extract information on characterizing patterns of community changes. The Adaptive Resonance Theory and Kohonen Network were both utilized in learning benthic macroinvertebrate communities in the Soktae Stream of the Suyong River collected monthly for three years. Initially, by regarding each monthly collection as a separate sample unit, communities were grouped into similar patterns after training with the networks. Subsequently, changes in communities in a sequence of samplings (e.g., two-month, four-month, etc.) were given as input to the networks. After training, it was possible to recognize new data set in line with the sampling procedure. Through the comparative study on benthic macroinvertebrates with these learning processes, patterns of community changes in chironomids diverged while those of the total benthic macro-invertebrates tended to be more stable.

  • PDF