• Title/Summary/Keyword: Kochin function

Search Result 5, Processing Time 0.018 seconds

A Far Field Solution of the Slowly Varying Drift Force on the Offshore Structure in Bichromatic Waves-Three Dimensional Problems

  • Lee, Sang-Moo
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • A far field approximate solution of the slowly varying force on a 3 dimensional offshore structure in gravity ocean waves is presented. The first order potential, or at least the far field form of the Kochin function, of each frequency wave is assumed to be known. The momentum flux of the fluid domain is formulated to find the time variant force acting on the floating body in bichromatic waves. The second order difference frequency force is identified and extracted from the time variant force. The final solution is expressed as the circular integration of the product of Kochin functions. The limiting form of the slowly varying force is identical to the mean drift force. It shows that the slowly varying force components caused by the body disturbance potential can be evaluated at the far field.

The Steady Drift Force and Moment on a Floating Body in Water of Finite Depth (유한수심에 놓인 부유체에 작용하는 시간평균 표류력 및 표류 모우먼트)

  • Hang-S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.1
    • /
    • pp.9-16
    • /
    • 1987
  • The second-order steady horizontal force and vertical moment are derived for a freely-floating body in water of finite depth. Momentum relations are used in terms of the Kochin function in the fluid region far from the body. The general results look very similar to those for deep water. The water depth is formally reflected in terms of the ratio between the phase and group velocities of incident waves. Computations are made for a Series 60 hull($C_B=0.6$) and are compared with the corresponding results of deep water. It is shown that the vertical drift moment for slender ships becomes completely free from water depth when the wave-ship length ratio is taken as parameter.

  • PDF

On the Prediction Method of Added Resistance of Ships in Regular Head Waves (선박의 파랑중 부가저항 계산법에 관한 연구)

  • Jae-Moon,Lew;Hyo-Chul,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.2
    • /
    • pp.14-20
    • /
    • 1986
  • Through the momentum considerations, added resistance of a ship in regular waves are studied within the framework of the linear potential theory for a ship moving with a constant mean forward speed. In this paper, added resistance in head waves with comparably small wave length is focused by modifying the Marou's method. The strength of the singularities for the Kochin function is modified by considering the diffraction potentials. Slender body theory is used to determine the diffraction potentials as Adachi did. The response of a ship motion is found by using new strip method. For the purpose of comparison with the present method, calculation was also conducted by Marou's and Gerritsma-Beukelman's method. Numerical calculations are performed for five different models, that is, series 60(Cb=0.6, 0.7, 0.8), S7-175 container ship and blunt bow model. Numerical results obtained by the present method show relatively good corelations comparing with experimental results in the region under considerations.

  • PDF

On the Calculation of Added Resistance of a Ship by Maruo′s Formula (Maruo 공식에 의한 부가저항 계산에 대한 소고)

  • 홍도천;홍사영;김은찬
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.202-207
    • /
    • 2001
  • The added resistance of a ship advancing in waves can be split into the resistance due to the radiation wave and the resistance due to the diffraction wave. In this study, the former has been calculated by a method based on Maruo's formula. The latter must be calculated by other methods. Ship motion is calculated by the usual strip method. The amplitude of two dimensional far-field waves is calculated using the improved Green integral equation. The present numerical method can be used for the estimation of the added resistance due to the radiation wave since the present numerical result is much smaller than other existing numerical results considered to be overestimated.

  • PDF

Drift Forces on a Freely-Floating Sphere in Water of Finite Depth(I) -Momentum Theorem Method- (유한수심(有限水深)의 해상(海上)에서 규칙파(規則波)에 놓인 구(球)에 작용(作用)하는 표류력(漂流力)(I) -운동량(運動量) 이론(理論) 방법(方法)-)

  • H.S.,Choi;T.M.,Oh
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.4
    • /
    • pp.33-40
    • /
    • 1983
  • The drift force acting on a freely-floating sphere in water of finite depth is studied within the framework of a linear potential theory. A velocity potential describing fluid motion is determined by distribution pulsating sources and dipoles on the immersed surface of the sphere. Upon knowing values of the potential, hydrodynamic forces are evaluated by integrating pressures over the immersed surface of the sphere. The motion response of the sphere in water of finite depth is obtained by solving the equation of motion. From these results, the drift force on the sphere is evaluated by the momentum theorem, in which a far-field velocity potential is utilized in forms of Kochin function. The drift force coefficient Cdr of a fixed sphere increases monotononically with non-dimensional wave frequency ${\sigma}a$. On the other hand, in freely-floating case, the Cdr has a peak value at ${\sigma}a$ of heave resonance. The magnitude of the drift force coefficient Cdr in the case of finite depth is different form that for deep water, but the general tendency seems to be similar in both cases. It is to note that Cdr is greater than 1.0 when non-dimensional water depth d/a is 1.5 in the case of freely-floating sphere.

  • PDF