• Title/Summary/Keyword: KoBERT model

Search Result 45, Processing Time 0.022 seconds

Development of Tourism Information Named Entity Recognition Datasets for the Fine-tune KoBERT-CRF Model

  • Jwa, Myeong-Cheol;Jwa, Jeong-Woo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.55-62
    • /
    • 2022
  • A smart tourism chatbot is needed as a user interface to efficiently provide smart tourism services such as recommended travel products, tourist information, my travel itinerary, and tour guide service to tourists. We have been developed a smart tourism app and a smart tourism information system that provide smart tourism services to tourists. We also developed a smart tourism chatbot service consisting of khaiii morpheme analyzer, rule-based intention classification, and tourism information knowledge base using Neo4j graph database. In this paper, we develop the Korean and English smart tourism Name Entity (NE) datasets required for the development of the NER model using the pre-trained language models (PLMs) for the smart tourism chatbot system. We create the tourism information NER datasets by collecting source data through smart tourism app, visitJeju web of Jeju Tourism Organization (JTO), and web search, and preprocessing it using Korean and English tourism information Name Entity dictionaries. We perform training on the KoBERT-CRF NER model using the developed Korean and English tourism information NER datasets. The weight-averaged precision, recall, and f1 scores are 0.94, 0.92 and 0.94 on Korean and English tourism information NER datasets.

Design of Category Classification Model for Food Posts using KoBERT (KoBERT를 활용한 식품 게시글 카테고리 분류 모델의 설계)

  • Tae Min Hyeon;Hui Jin Kim;Eun Zi Lim;Joon-Min Gil
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.572-573
    • /
    • 2023
  • 본 논문에서는 식품 판매 게시글에 대한 카테고리 분류를 위해 자연어처리 모델인 KoBERT 모델에 기반하여 식품 판매글에 대한 카테고리 분류 모델을 설계하고 구현한다. 본 논문을 통해 구현된 식품 판매 게시글의 카테고리 분류 모델은 정확도 평가에 대해서 비교적 우수한 성능을 산출하였다.

Tourist Attraction Classification using Sentence Generation Model and Review Data (문장 생성 모델 학습 및 관광지 리뷰 데이터를 활용한 관광지 분류 기법)

  • Jun-Hyeong Moon;In-Whee Joe
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.745-747
    • /
    • 2023
  • 여러 분야에서 인공지능 모델을 활용한 추천 방법들이 많이 사용되고 있다. 본 논문에서는 관광지의 대중적이고 정확한 추천을 위해 GPT-3 와 같은 생성 모델로 생성한 가상의 리뷰 문장을 통해 KoBERT 모델을 학습했다. 생성한 데이터를 통한 KoBERT 의 학습 정확도는 0.98, 테스트 정확도는 0.81 이고 실제 관광지별 리뷰 데이터를 활용해 관광지를 분류했다.

Analyzing Effective Poll Prediction Model Using Social Media (SNS) Data Augmentation (소셜 미디어(SNS) 데이터 증강을 활용한 효과적인 여론조사 예측 모델 분석)

  • Hwang, Sunik;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1800-1808
    • /
    • 2022
  • During the election period, many polling agencies survey and distribute the approval ratings for each candidate. In the past, public opinion was expressed through the Internet, mobile SNS, or community, although in the past, people had no choice but to survey the approval rating by relying on opinion polls. Therefore, if the public opinion expressed on the Internet is understood through natural language analysis, it is possible to determine the candidate's approval rate as accurately as the result of the opinion poll. Therefore, this paper proposes a method of inferring the approval rate of candidates during the election period by synthesizing the political comments of users through internet community posting data. In order to analyze the approval rate in the post, I would like to suggest a method for generating the model that has the highest correlation with the actual opinion poll by using the KoBert, KcBert, and KoELECTRA models.

Construction of a Bidirectional Transformer Model for Paraphrasing Detection (패러프레이즈 문장 검출을 위한 양방향 트랜스포머 모델 구축)

  • Ko, Bowon;Choi, Ho-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.465-469
    • /
    • 2019
  • 자연어 처리를 위해서 두 문장의 의미 유사성을 분석하는 것은 아주 중요하다. 이 논문은 패러프레이즈 검출 태스크를 수행하기 위한 Paraphrase-BERT를 제안한다. 우선 구글이 제안한 사전 학습된 BERT를 그대로 이용해서 패러프레이즈 데이터 (MRPC)를 가지고 파인 튜닝하였고 추가적으로 최근에 구글에서 새로 발표한 Whole Word Masking 기술을 사용하여 사전 학습된 BERT 모델을 새롭게 파인 튜닝하였다. 그리고 마지막으로 다중 작업 학습을 수행하여 성능을 향상시켰다. 구체적으로 질의 응답 태스크와 패러프레이즈 검출 태스크를 동시에 학습하여 후자가 더 잘 수행될 수 있도록 하였다. 결과적으로 점점 더 성능이 개선되었고 (11.11%의 정확도 향상, 7.88%의 F1 점수 향상), 향후 작업으로 파인 튜닝하는 방법에 대해서 추가적으로 연구할 계획이다.

  • PDF

An Empirical Study of Topic Classification for Korean Newspaper Headlines (한국어 뉴스 헤드라인의 토픽 분류에 대한 실증적 연구)

  • Park, Jeiyoon;Kim, Mingyu;Oh, Yerim;Lee, Sangwon;Min, Jiung;Oh, Youngdae
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.287-292
    • /
    • 2021
  • 좋은 자연어 이해 시스템은 인간과 같이 텍스트에서 단순히 단어나 문장의 형태를 인식하는 것 뿐만 아니라 실제로 그 글이 의미하는 바를 정확하게 추론할 수 있어야 한다. 이 논문에서 우리는 뉴스 헤드라인으로 뉴스의 토픽을 분류하는 open benchmark인 KLUE(Korean Language Understanding Evaluation)에 대하여 기존에 비교 실험이 진행되지 않은 시중에 공개된 다양한 한국어 라지스케일 모델들의 성능을 비교하고 결과에 대한 원인을 실증적으로 분석하려고 한다. KoBERT, KoBART, KoELECTRA, 그리고 KcELECTRA 총 네가지 베이스라인 모델들을 주어진 뉴스 헤드라인을 일곱가지 클래스로 분류하는 KLUE-TC benchmark에 대해 실험한 결과 KoBERT가 86.7 accuracy로 가장 좋은 성능을 보여주었다.

  • PDF

Automatic Classification of Academic Articles Using BERT Model Based on Deep Learning (딥러닝 기반의 BERT 모델을 활용한 학술 문헌 자동분류)

  • Kim, In hu;Kim, Seong hee
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.3
    • /
    • pp.293-310
    • /
    • 2022
  • In this study, we analyzed the performance of the BERT-based document classification model by automatically classifying documents in the field of library and information science based on the KoBERT. For this purpose, abstract data of 5,357 papers in 7 journals in the field of library and information science were analyzed and evaluated for any difference in the performance of automatic classification according to the size of the learned data. As performance evaluation scales, precision, recall, and F scale were used. As a result of the evaluation, subject areas with large amounts of data and high quality showed a high level of performance with an F scale of 90% or more. On the other hand, if the data quality was low, the similarity with other subject areas was high, and there were few features that were clearly distinguished thematically, a meaningful high-level performance evaluation could not be derived. This study is expected to be used as basic data to suggest the possibility of using a pre-trained learning model to automatically classify the academic documents.

A Study on Brand Image Analysis of Gaming Business Corporation using KoBERT and Twitter Data

  • Kim, Hyunji
    • Journal of Korea Game Society
    • /
    • v.21 no.6
    • /
    • pp.75-86
    • /
    • 2021
  • Brand image refers to how customers, stakeholders and the market see and recognize the brand. A positive brand image leads to continuous purchases, but a negative brand image is directly linked to consumers' buying behavior, such as stopping purchases, so from the corporate perspective, it needs to be quickly and accurately identified. Currently, methods of investigating brand images include surveys and SNS surveys, which have limited number of samples and are time-consuming and costly. Therefore, in this study, we are going to conduct an emotional analysis of text data on social media by utilizing the machine learning based KoBERT model, and then suggest how to use it for game corporate brand image analysis and verify its performance. The result has proved some degree of usability showing the same ranking within five brands when compared with the BRI Korea's brand reputation ranking.

Hierarchical Automated Essay Evaluation Model Using Korean Sentence-Bert Embedding (한국어 Sentence-BERT 임베딩을 활용한 자동 쓰기 평가 계층적 구조 모델)

  • Minsoo Cho;Oh Woog Kwon;Young Kil Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.526-530
    • /
    • 2022
  • 자동 쓰기 평가 연구는 쓰기 답안지를 채점하는데 드는 시간과 비용을 절감할 수 있어, 교육 분야에서 큰 관심을 가지고 있다. 본 연구의 목적은 쓰기 답안지의 문서 구조를 효과적으로 학습하여 평가하고, 문장단위의 피드백을 제공하는데 있다. 그 방법으로는 문장 레벨에서 한국어 Sentence-BERT 모델을 활용하여 각 문장을 임베딩하고, LSTM 어텐션 모델을 활용하여 문서 레벨에서 임베딩 문장을 모델링한다. '한국어 쓰기 텍스트-점수 구간 데이터'를 활용하여 해당 모델의 성능 평가를 진행하였으며, 다양한 KoBERT 기반 모델과 비교 평가를 통해 제안하는 모델의 방법론이 효과적임을 입증하였다.

  • PDF

Document Classification Methodology Using Autoencoder-based Keywords Embedding

  • Seobin Yoon;Namgyu Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.35-46
    • /
    • 2023
  • In this study, we propose a Dual Approach methodology to enhance the accuracy of document classifiers by utilizing both contextual and keyword information. Firstly, contextual information is extracted using Google's BERT, a pre-trained language model known for its outstanding performance in various natural language understanding tasks. Specifically, we employ KoBERT, a pre-trained model on the Korean corpus, to extract contextual information in the form of the CLS token. Secondly, keyword information is generated for each document by encoding the set of keywords into a single vector using an Autoencoder. We applied the proposed approach to 40,130 documents related to healthcare and medicine from the National R&D Projects database of the National Science and Technology Information Service (NTIS). The experimental results demonstrate that the proposed methodology outperforms existing methods that rely solely on document or word information in terms of accuracy for document classification.