• Title/Summary/Keyword: Knudsen permeability

검색결과 14건 처리시간 0.019초

THE PREPARTION AND CHAEATERIZATION OF ALUMINA UF MEMBRANE BY SOL-GEL PROCESS

  • Choi, Y. H.;Paik, J. S.;Kim, H. C.;Lee, S. B.;Oh-kim, E. O.
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1991년도 추계 총회 및 학술발표회
    • /
    • pp.29-33
    • /
    • 1991
  • Alumina UF membranes were prepared by sol-gel process and their gas permeabilities were characterized. Alumina MF membrane with average pore diameter about 0.12$\mu$m and tubular shape was used as a support. Gas permeation measurements of helium and nitrogen gas exhibited the permeabilities of 1.58 $\times$ 10E-6 and $0.63 \times 10E-6 cc\cdot cm(STP)/cm^2\cdot sec \cdot cmHg$, respectively. The permeability ratio was 2.5. This means the gas permeation is fully governed by knudsen diffusion mechanism.

  • PDF

제올라이트 복합 분리막의 합성 및 특성화(II): ZSM-5 제올라이트 복합막의 합성 및 $CO_2$ 분리 효율 (Synthesis and Characterization of Zeolite Composite Membranes (II): Synthesis and $CO_2$ Separation Efficiency of ZSM-5 Zeolite Composite Membranes)

  • 현상훈;송재권;김준학
    • 한국세라믹학회지
    • /
    • 제34권7호
    • /
    • pp.747-757
    • /
    • 1997
  • ZSM-5 zeolite composite membranes have been synthesized from a silica sol solution containing TPABr as an organic template by the dip-coating and the pressurized-coating hydrothermal treatment techniques. The CO2 separation efficiency of synthesized composite membranes was also investigated. The permeation mechanism of CO2 through ZSM-5 membranses was the surface diffusion, and that of N2, O2, and He gases was Knudsen diffusion or activated diffusion depending on the synthetic method of membranes and the measurement temperature. The CO2/N2 separation factor of the membrane prepared by the dip-coating hydrothermal treatment was 2.5 at about 12$0^{\circ}C$, while the ZSM-5 composite membrane synthesized by the pressurized-coating hydrothermal treatment technique showed the CO2/N2 separation factor of 9.0 at room temperature higher than that ever reported in the literature.

  • PDF

PTMSP/PDMS-Borosilicate 복합막에 의한 수소-질소 기체 분리에 관한 연구 (Separation of Hydrogen-Nitrogen Gases by PTMSP/PDMS-Borosilicate Composite Membranes)

  • 이석호;이현경
    • 멤브레인
    • /
    • 제25권2호
    • /
    • pp.123-131
    • /
    • 2015
  • PTMSP와 PDMS로부터 합성된 PTMSP/PDMS 그라프트 공중합체에 다공성 borosilicate를 0~5 wt% 첨가하여 PTMSP/PDMS-borosilicate 복합막을 제조하였다. 합성된 PTMSP/PDMS 그라프트 공중합체의 수평균분자량(${\bar{M}}_n$)은 460,000이었고, 중량평균분자량(${\bar{M}}_w$)은 570,000이었으며, 유리전이온도($T_g$)는 $33.53^{\circ}C$에서 나타났다. TGA 측정에 의하면 PTMSP/PDMS에 borosilicate가 첨가되면 복합막의 감량이 작아지고 감량이 완결되는 온도도 낮아졌다. SEM측정에 의하면 PTMSP/PDMS-borosilicate 복합막 내에 들어있는 borosilicate는 $1{\sim}5{\mu}m$ 크기로 분산되어 있었다. 기체투과 실험에 의하면 PTMSP/PDMS-borosilicate가 첨가되면서 자유부피, 공동, 기공률이 증가하여 기체투과가 용해확산에 의한 것보다 분자체거름, 표면확산, Knudsen 확산에 의해 일어나는 경우가 점차 증가하여 $H_2$$N_2$의 투과도는 증가하고 선택도($H_2/N_2$)는 감소하였다.

Gas Permeation of SiC Membrane Coated on Multilayer γ-Al2O3 with a Graded Structure for H2 Separation

  • Yoon, Mi-Young;Kim, Eun-Yi;Kim, Young-Hee;Whang, Chin-Myung
    • 한국재료학회지
    • /
    • 제20권9호
    • /
    • pp.451-456
    • /
    • 2010
  • A promising candidate material for a $H_2$ permeable membrane is SiC due to its many unique properties. A hydrogen-selective SiC membrane was successfully fabricated on the outer surface of an intermediate multilayer $\gamma-Al_2O_3$ with a graded structure. The $\gamma-Al_2O_3$ multilayer was formed on top of a macroporous $\alpha-Al_2O_3$ support by consecutively dipping into a set of successive solutions containing boehmite sols of different particle sizes and then calcining. The boehmite sols were prepared from an aluminum isopropoxide precursor and heated to $80^{\circ}C$ with high speed stirring for 24 hrs to hydrolyze the precursor. Then the solutions were refluxed at $92^{\circ}C$ for 20 hrs to form a boehmite precipitate. The particle size of the boehmite sols was controlled according to various experimental parameters, such as acid types and acid concentrations. The topmost SiC layer was formed on top of the intermediate $\gamma-Al_2O_3$ by pyrolysis of a SiC precursor, polycarbosilane, in an Ar atmosphere. The resulting amorphous SiC-on-$Al_2O_3$ composite membrane pyrolyzed at $900^{\circ}C$ possessed a high $H_2$ permeability of $3.61\times10^{-7}$ $mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$ and the $H_2/CO_2$ selectivity was much higher than the theoretical value of 4.69 in all permeation temperature ranges. Gas permeabilities through a SiC membrane are affected by Knudsen diffusion and a surface diffusion mechanism, which are based on the molecular weight of gas species and movement of adsorbed gas molecules on the surface of the pores.