• Title/Summary/Keyword: Knudsen 층

Search Result 13, Processing Time 0.01 seconds

Gas Permeation Characteristics of Microporous Alumina Membrane Prepared by Anodic oxidation (양극산화에 의한 다공성 알루미나 막의 제조 및 기체투과 특성)

  • Shim, Won;Lee, Chang-Woo;Hahm, Yeong-Min
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.212-217
    • /
    • 1999
  • Porous alumina membrane with asymmetrical structure was prepared by anodic oxidation under constant DC current mode in aqueous solution of sulfuric acid. In order to produce membrane with improved properties, the aluminium plate was pre-treated with thermal oxidation, chemical polishing and electrochemical polishing before anodic oxidation. The thickness and pore diameter of the membrane were controlled by current density and charge density, respectively. The upper layer of 20 nm under of pore diameter was produced under very low current density while the lower layer of 36 nm pore diameter was produced under higher current density. The thickness of the membrane was about $80{\sim}90{\mu}m$ and that of the upper layer was $6{\mu}m$. We found that the mechanism of gas permeation through the membrane depended on Knudsen diffusion.

  • PDF

Fluidization Characteristics in Fluidized Bed Reactors Operated in Subatmospheric Pressure (대기압 이하에서 운전하는 유동층 반응기의 유동 특성)

  • Park, Sounghee
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.307-312
    • /
    • 2020
  • Fluidized bed reactors operated in subatmospheric pressure has been focused because several industrial applications such as vacuum drying and plasma cvd requires reduced pressure fludization. However, the hydrodynamics of fluidized beds in subatmospheric pressure has not been extensively investigated. The pressure drop in the fluidized bed has been measured with variation of downstream pressures from 1.33 to 101.3 kPa in the shallow and deep fluidized beds under the sub-atmospheric pressures. The obtained minimum fluidization velocity of powders is a function of pressure due to the changes of gas density and mean free path. We can experimentally determine the critical Knudsen number and the critical pressure to define the slip regime significantly to influence the hydrodynamics of fluidized beds.

A Study on the Effect of Flow Properties in Shale Gas Reservoirs (셰일가스 저류층에서의 동적물성 영향 분석)

  • Kim, Jung-Gyun;Kang, Il-Oh;Shin, Chang-Hoon;Lee, Seong-Min;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.2
    • /
    • pp.50-57
    • /
    • 2017
  • Shale gas reservoir are composed of very fine grained particles, and their pores are very small, at the scale of nanometers. In this study, a parametric study was implemented to investigate the effect of knudsen diffusion, relative permeability and permeability reduction in shale gas reservoir. Shale gas reservoir model in Horn-River was developed to confirm the productivity for different design parameters such as diffusion, relative permeability, connate water saturation, and permeability reduction.

Analysis of rarefied compressible boundary layers in transition regime (천이영역의 희박기체 압축성 경계층 해석)

  • Choe, Seo-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.509-517
    • /
    • 1997
  • Results of flat plate compressible boundary layer calculation, based on discrete formulation of DSMC method, are presented in low Mach number and low Knudsen number range. The free stream is a uniform flow of pure nitrogen at various Mach numbers in low pressures (i.e. rarefied gas). Complete thermal accommodation and diffuse molecular reflections are used as the wall boundary condition, replacing unreal no-slip condition used in continuum calculations. In the discrete formulation of DSMC method, there is no need to use ad hoc assumptions on transport properties like viscosity and thermal conductivity, instead viscosity is calculated from values of other field variables (velocity and shear stress). Also the results are compared with existing self-similar continuum solutions. In all Mach number cases computed, velocity slip is most pronounced in regions near the leading edge where continuum formulation renders the solution singular. As the boundary layer develops further downstream, velocity slips asymptote to values that are between 10 to 20% of the magnitude of free stream velocity. When the free stream number density is reduced, so the gas more rarefied, the velocity slip increases as expected.

A study of high-power density laser welding process considering surface tension and recoil pressure (표면장력과 후압을 고려한 고에너지밀도 레이저 용접공정 해석)

  • Ha, Eung-Ji;Kim, Woo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1190-1195
    • /
    • 2004
  • In this study, numerical investigation has been performed on the evolution of key-hole geometry during high-energy density laser welding process. Unsteady phase-change heat transfer and fluid flow with the surface tension and recoil pressure are simulated. To model the overheated surface temperature and recoil pressure considering subsonic/sonic vapor flow, the one-dimensional vaporization models proposed by Ganesh and Knight are coupled over liquid-vapor interface. It is shown that the present model predicts well both the vaporization physics and the fluid flow in the thin liquid layer over the other model.

  • PDF

A Unified Analysis of Low-Power and High-Power Density Laser Welding Processes with Evolution of Free Surface (자유표면변형을 고려한 저에너지밀도 및 고에너지밀도 레이저 용접공정 통합 해석)

  • Ha Eung-Ji;Kim Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1111-1118
    • /
    • 2005
  • In this study, a unified numerical investigation has been performed on the evolution of weld pool and key-hole geometry during low-power and high-power density laser welding. Unsteady phase-change heat transfer and fluid flow with the surface tension are examined. The one-dimensional vaporization model is introduced to model the overheated surface temperature and recoil pressure during high-power density laser welding. It is shown that Marangoni convection in the weld pool is dominant at low-power density laser welding, and the keyhole with thin liquid layer and the hump are visible at high-power density laser welding. It is also shown that the transition from conduction welding to penetration welding fur iron plate exists when the laser power density is about $10^6W/Cm^2$.

Synthesis of Silica/Alumina Composite Membrane Using Sol-Gel and CVD Method for Hydrogen Purification at High Temperature (Sol-gel 및 CVD법을 이용한 고온 수소 분리용 silica/alumina 복합막의 합성)

  • 서봉국;이동욱;이규호
    • Membrane Journal
    • /
    • v.11 no.3
    • /
    • pp.124-132
    • /
    • 2001
  • Silica membranes were prepared on a porous ${\alpha}$-alumina tube with pore size of 150nm by sol-gel and chemical vapor deposition(CVD) method for hydrogen separation at high temperatures. Silica and ${\gamma}$-lumina membranes formed by the sol-gel method possessed a large amount of mesopores of a Knudsen diffusion regime. In order to improve the $H_2$ selectivity, silica was deposited in the sol-gel derived silica/${\gamma}$-alumina layer by thermal decomposition of tetraethyl orthosilicate(TEOS) at $600^{\circ}C$. The CVD with forced cross flow through the porous wall of the support was very effective in plugging mesopores that were left unplugged in the membranes. The CVD modified silica/alumina composite membrane completely rejected nitrogen permeation and thus showed a high $H_2$ selectivity by molecular sieve effect. the permeation of hydrogen was explained by activated diffusion and the activation energy was 9.52kJ/mol.

  • PDF

A Study on the Hydriding and Dehydriding Kinetics of a Mechanically-Alloyed Mg-25wt.%Ni Mixture (기계적 합금처리된 Mg-25wt.%Ni 혼합물의 수소화물 형성 및 분해에 대한 반응속도론적 연구)

  • Song, Myoung Youp
    • Journal of Hydrogen and New Energy
    • /
    • v.10 no.1
    • /
    • pp.9-17
    • /
    • 1999
  • The hydriding and dehydriding kinetics were studied for a Mg-25wt.%Ni mixture which has the most excellent hydrogen-storage characteristics among many mechanically-alloyed mixtures. The hydriding and dehydriding rates were measured and the rate-controlling steps were determined by comparing the hydriding and dehydriding rates with the theoretical rate equations. The rate-controlling step in the hydriding reaction is the Knudsen flow and the ordinary gaseous diffusion of hydrogen molecules through interparticle channels, cracks, etc. in the various ranges of weight percentage of absorbed hydrogen $H_a$ below $H_a$=4.0. In the $H_a$ range 4.0 < $H_a{\leq}4.25$, the diffusion of hydrogen atoms through the growing hydride layer is considered the rate-controlling step. The rate-controlling step in the dehydriding reaction is the Knudsen flow and the ordinary gaseous diffusion of hydrogen molecules for all the ranges of weight percentage of desorbed hydrogen $H_d$.

  • PDF

Gas Permeation Characteristics of Silica Membrane Prepared by Ultrasonic Spray Pyrolysis (초음파 분무 열분해법에 의해 합성한 실리카 막의 기체 투과 특성)

  • Lee Kew-Ho;Youn Min-Young;Park Sang-Jin;Lee Dong-Wook;Sea Bongkuk
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.105-113
    • /
    • 2005
  • Silica membranes were prepared on a porous metal sheet by ultrasonic spray pyrolysis method for gas separation at high temperatures. In order to improve the permselectivity, silica was deposited in the sol-gel derived $silica/\gamma-alumina$ intermediate layer by pyrolysis of tetraethyl orthosilicate (TEOS) at 873 K. The pyrolysis with forced cross flow through the porous wall of the support was very effective in plugging mesopores, Knudsen diffusion regime, that were left unplugged in the membranes. At permeation temperature of 523 K, the silica/alumina composite membrane showed $H_2/N_2$ and water/methanol selectivity as high as 17 and 16, respectively, by molecular sieve effect.

An Experimental Study on Micro Shock Tube Flow (Micro Shock Tube 유동에 관한 실험적 연구)

  • Park, Jin-Ouk;Kim, Gyu-Wan;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.74-80
    • /
    • 2012
  • Past few years have seen the growing importance of micro shock tubes in various engineering applications like micro combution, micro propulsion, particle delivery systems. But in order to efficiently apply Micro Shock Tube to such areas require the detailed knowledge of shock characteristics and flow field inside a micro shock tube. Due to many factors such as boundary layer, low Reynolds number and high Knudsen number shock propagation inside micro shock tubes will be quite different from that of the well established macro shock tubes. In the present study, experimental studies were carried out on micro shock tubes of two diameters to investigate flow characteristics and shock propagation. Pressure values were measured at different locations inside the driven section. From the experimental values other parameters like shock velocity, shock strength were found and shock wave diagram was constructed.