• Title/Summary/Keyword: Knowledge-based rules

Search Result 467, Processing Time 0.027 seconds

A Real-Time Stock Market Prediction Using Knowledge Accumulation (지식 누적을 이용한 실시간 주식시장 예측)

  • Kim, Jin-Hwa;Hong, Kwang-Hun;Min, Jin-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.109-130
    • /
    • 2011
  • One of the major problems in the area of data mining is the size of the data, as most data set has huge volume these days. Streams of data are normally accumulated into data storages or databases. Transactions in internet, mobile devices and ubiquitous environment produce streams of data continuously. Some data set are just buried un-used inside huge data storage due to its huge size. Some data set is quickly lost as soon as it is created as it is not saved due to many reasons. How to use this large size data and to use data on stream efficiently are challenging questions in the study of data mining. Stream data is a data set that is accumulated to the data storage from a data source continuously. The size of this data set, in many cases, becomes increasingly large over time. To mine information from this massive data, it takes too many resources such as storage, money and time. These unique characteristics of the stream data make it difficult and expensive to store all the stream data sets accumulated over time. Otherwise, if one uses only recent or partial of data to mine information or pattern, there can be losses of valuable information, which can be useful. To avoid these problems, this study suggests a method efficiently accumulates information or patterns in the form of rule set over time. A rule set is mined from a data set in stream and this rule set is accumulated into a master rule set storage, which is also a model for real-time decision making. One of the main advantages of this method is that it takes much smaller storage space compared to the traditional method, which saves the whole data set. Another advantage of using this method is that the accumulated rule set is used as a prediction model. Prompt response to the request from users is possible anytime as the rule set is ready anytime to be used to make decisions. This makes real-time decision making possible, which is the greatest advantage of this method. Based on theories of ensemble approaches, combination of many different models can produce better prediction model in performance. The consolidated rule set actually covers all the data set while the traditional sampling approach only covers part of the whole data set. This study uses a stock market data that has a heterogeneous data set as the characteristic of data varies over time. The indexes in stock market data can fluctuate in different situations whenever there is an event influencing the stock market index. Therefore the variance of the values in each variable is large compared to that of the homogeneous data set. Prediction with heterogeneous data set is naturally much more difficult, compared to that of homogeneous data set as it is more difficult to predict in unpredictable situation. This study tests two general mining approaches and compare prediction performances of these two suggested methods with the method we suggest in this study. The first approach is inducing a rule set from the recent data set to predict new data set. The seocnd one is inducing a rule set from all the data which have been accumulated from the beginning every time one has to predict new data set. We found neither of these two is as good as the method of accumulated rule set in its performance. Furthermore, the study shows experiments with different prediction models. The first approach is building a prediction model only with more important rule sets and the second approach is the method using all the rule sets by assigning weights on the rules based on their performance. The second approach shows better performance compared to the first one. The experiments also show that the suggested method in this study can be an efficient approach for mining information and pattern with stream data. This method has a limitation of bounding its application to stock market data. More dynamic real-time steam data set is desirable for the application of this method. There is also another problem in this study. When the number of rules is increasing over time, it has to manage special rules such as redundant rules or conflicting rules efficiently.

A Case Study of Middle School Students' Abductive Inference during a Geological Field Excursion (야외 지질 학습에서 나타난 중학생들의 귀추적 추론 사례 연구)

  • Maeng, Seung-Ho;Park, Myeong-Sook;Lee, Jeong-A;Kim, Chan-Jong
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.9
    • /
    • pp.818-831
    • /
    • 2007
  • Recognizing the importance of abductive inquiry in Earth science, some theoretical approaches that deploy abduction have been researched. And, it is necessary that the abductive inquiry in a geological field excursion as a vivid locale of Earth science inquiry should be researched. We developed a geological field trip based on the abductive learning model, and investigated students' abductive inference, thinking strategies used in those inferences, and the impact of a teacher's pedagogical intervention on students' abductive inference. Results showed that students, during the field excursion, could accomplish abductive inference about rock identification, process of different rock generation, joints generation in metamorpa?ic rocks, and terrains at the field trip area. They also used various thinking strategies in finding appropriate rules to construe the facts observed at outcrops. This means that it is significant for the enhancement of abductive reasoning skills that students experience such inquiries as scientists do. In addition, a teacher's pedagogical interventions didn't ensure the content of students' inference while they helped students perform abductive reasoning and guided their use of specific thinking strategies. Students had found reasoning rules to explain the 01: served facts from their wrong prior knowledge. Therefore, during a geological field excursion, teachers need to provide students with proper background knowledge and information in order that students can reason rues for persuasive abductive inference, and construe the geological features of the field trip area by the establishment of appropriate hypotheses.

Rough Set Analysis for Stock Market Timing (러프집합분석을 이용한 매매시점 결정)

  • Huh, Jin-Nyung;Kim, Kyoung-Jae;Han, In-Goo
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.77-97
    • /
    • 2010
  • Market timing is an investment strategy which is used for obtaining excessive return from financial market. In general, detection of market timing means determining when to buy and sell to get excess return from trading. In many market timing systems, trading rules have been used as an engine to generate signals for trade. On the other hand, some researchers proposed the rough set analysis as a proper tool for market timing because it does not generate a signal for trade when the pattern of the market is uncertain by using the control function. The data for the rough set analysis should be discretized of numeric value because the rough set only accepts categorical data for analysis. Discretization searches for proper "cuts" for numeric data that determine intervals. All values that lie within each interval are transformed into same value. In general, there are four methods for data discretization in rough set analysis including equal frequency scaling, expert's knowledge-based discretization, minimum entropy scaling, and na$\ddot{i}$ve and Boolean reasoning-based discretization. Equal frequency scaling fixes a number of intervals and examines the histogram of each variable, then determines cuts so that approximately the same number of samples fall into each of the intervals. Expert's knowledge-based discretization determines cuts according to knowledge of domain experts through literature review or interview with experts. Minimum entropy scaling implements the algorithm based on recursively partitioning the value set of each variable so that a local measure of entropy is optimized. Na$\ddot{i}$ve and Booleanreasoning-based discretization searches categorical values by using Na$\ddot{i}$ve scaling the data, then finds the optimized dicretization thresholds through Boolean reasoning. Although the rough set analysis is promising for market timing, there is little research on the impact of the various data discretization methods on performance from trading using the rough set analysis. In this study, we compare stock market timing models using rough set analysis with various data discretization methods. The research data used in this study are the KOSPI 200 from May 1996 to October 1998. KOSPI 200 is the underlying index of the KOSPI 200 futures which is the first derivative instrument in the Korean stock market. The KOSPI 200 is a market value weighted index which consists of 200 stocks selected by criteria on liquidity and their status in corresponding industry including manufacturing, construction, communication, electricity and gas, distribution and services, and financing. The total number of samples is 660 trading days. In addition, this study uses popular technical indicators as independent variables. The experimental results show that the most profitable method for the training sample is the na$\ddot{i}$ve and Boolean reasoning but the expert's knowledge-based discretization is the most profitable method for the validation sample. In addition, the expert's knowledge-based discretization produced robust performance for both of training and validation sample. We also compared rough set analysis and decision tree. This study experimented C4.5 for the comparison purpose. The results show that rough set analysis with expert's knowledge-based discretization produced more profitable rules than C4.5.

FOREX Web-Based Trading Platform with E-Learning Features

  • Yong, Yoke Leng;Lieu, Shang Qin;Ngo, David;Lee, Yunli
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.271-278
    • /
    • 2017
  • There has been an influx of traders and researchers eager to gain a better understanding of the market due to the rapid growth of the FOREX market. Traders with varying degree of experience are also often inundated with information, analysis methods as well as trading rules when making a trading decision on buying/selling a currency exchange pair. Thus, this paper reviews the current computational tools and analysis methods used within the FOREX trading community and proposes the development of a web-based trading platform with e-learning features to support beginners. Novice traders could also benefit from the use of the proposed e-learning trading platform as it helps them gain valuable knowledge and navigate the FOREX market in real-time. Even experienced traders would find it useful as the platform could be used for actual trading and acts as a reference point to understand the reasoning behind the certain technical analysis implementation that are still unclear to them.

A Design of the Expert System for Diagnosis of Abnormal Gait by using Rule-Based Representation (규칙처리 표현방식을 이용한 이상 보행용 전문가 시스템의 설계)

  • Lee, Eung-Sang;Lee, Ju-Hyeong;Lee, Myoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1329-1332
    • /
    • 1987
  • This paper describes a design of the expert system for diagnosis of abnormal gait patients. This system makes the rule-based representation that can easily extend the knowledge-base and naturally represent the uncertainty, and the inference engine that uses forward chaining which covers the reasoning from the first condition to the goal. The results of inferring various maladies using this system are as follows: 1) In cases of progressive muscular dystrophy, cerebral vascular accident, peripheral neuropathic lesion and peroneal nerve injury, the result of inference is the same as that of medical specialists' with 100% accuracy. 2) In cases of Neuritis, Paralysis agitan and Brain tumor, the accuracy of inference is less than 50% compared to that of medical specialists. With above results, we decide that the rule-based representations of some maladies ard accurate relatively, but that the correction and the extention of some rules and some methods of problem solving are required in order to construct the complete expert system for diagnosis of abnormal gait patients.

  • PDF

Development of Polynomial Based Response Surface Approximations Using Classifier Systems (분류시스템을 이용한 다항식기반 반응표면 근사화 모델링)

  • 이종수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.127-135
    • /
    • 2000
  • Emergent computing paradigms such as genetic algorithms have found increased use in problems in engineering design. These computational tools have been shown to be applicable in the solution of generically difficult design optimization problems characterized by nonconvexities in the design space and the presence of discrete and integer design variables. Another aspect of these computational paradigms that have been lumped under the bread subject category of soft computing, is the domain of artificial intelligence, knowledge-based expert system, and machine learning. The paper explores a machine learning paradigm referred to as teaming classifier systems to construct the high-quality global function approximations between the design variables and a response function for subsequent use in design optimization. A classifier system is a machine teaming system which learns syntactically simple string rules, called classifiers for guiding the system's performance in an arbitrary environment. The capability of a learning classifier system facilitates the adaptive selection of the optimal number of training data according to the noise and multimodality in the design space of interest. The present study used the polynomial based response surface as global function approximation tools and showed its effectiveness in the improvement on the approximation performance.

  • PDF

A study on the development on project scope management module using rule and case-based reasoning (규칙과 사례기반추론 기법을 이용한 프로젝트 범위관리 모듈 개발에 관한 연구)

  • Shin, Ho-Kun;Jeon, Sung-Ho;Kim, Chang-Ho
    • The Journal of Information Technology
    • /
    • v.7 no.3
    • /
    • pp.127-137
    • /
    • 2004
  • A Project planning is one of the most important processes that determines success and failure of a project. Scope management for a project planning is also essential job in system integration project. However project planning is very difficult because lots of factors and their relationships should be considered. Therefore project planning of system integration project has been done by project manager's own knowledge and experience. It is necessary to develop an algorithm of WBS(Work Breakdown Structure) identification & document selection along to project's specificity in project management system using AI technique. This study presents a methodology to cope with the limitations of the existing studies that have uniformly been customizing the methodology by only project complexity. We propose PPSM(Project planning support module) based on determination rules regarding route maps and document levels, and CBR(Case-Based Reasoning) for WBS identification.

  • PDF

A Study on the Rule-Based Auto-tuning PI Controller for Speed Control of D.C Servo Mortor (직류 서보 전동기의 속도제어를 위한 규칙기반 자동동조 PI 제어기에 관한 연구)

  • Park, Wal-Seo;Oh, Hun
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.2
    • /
    • pp.89-93
    • /
    • 1997
  • As industry gets rapidly automatic, D.C servo motor which is controlled by a PI controller needs accurate control. However, when a system has various characters, it is very difficult to guarantee its accuracy. In this paper, rule-based auto-tuning PI controller for motor speed control system is presented as a way of solving this problem. Some rules are based on Ziegler-Nichols step response and expert knowledge. Control parameters are determined by error, slope, steepest slope point, and permiSSIon overshoot. The accuracy of control is demonstrated by a computer s mulation .

  • PDF

A Deep Learning Model for Extracting Consumer Sentiments using Recurrent Neural Network Techniques

  • Ranjan, Roop;Daniel, AK
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.238-246
    • /
    • 2021
  • The rapid rise of the Internet and social media has resulted in a large number of text-based reviews being placed on sites such as social media. In the age of social media, utilizing machine learning technologies to analyze the emotional context of comments aids in the understanding of QoS for any product or service. The classification and analysis of user reviews aids in the improvement of QoS. (Quality of Services). Machine Learning algorithms have evolved into a powerful tool for analyzing user sentiment. Unlike traditional categorization models, which are based on a set of rules. In sentiment categorization, Bidirectional Long Short-Term Memory (BiLSTM) has shown significant results, and Convolution Neural Network (CNN) has shown promising results. Using convolutions and pooling layers, CNN can successfully extract local information. BiLSTM uses dual LSTM orientations to increase the amount of background knowledge available to deep learning models. The suggested hybrid model combines the benefits of these two deep learning-based algorithms. The data source for analysis and classification was user reviews of Indian Railway Services on Twitter. The suggested hybrid model uses the Keras Embedding technique as an input source. The suggested model takes in data and generates lower-dimensional characteristics that result in a categorization result. The suggested hybrid model's performance was compared using Keras and Word2Vec, and the proposed model showed a significant improvement in response with an accuracy of 95.19 percent.

Improving Recall for Context-Sensitive Spelling Correction Rules using Conditional Probability Model with Dynamic Window Sizes (동적 윈도우를 갖는 조건부확률 모델을 이용한 한국어 문맥의존 철자오류 교정 규칙의 재현율 향상)

  • Choi, Hyunsoo;Kwon, Hyukchul;Yoon, Aesun
    • Journal of KIISE
    • /
    • v.42 no.5
    • /
    • pp.629-636
    • /
    • 2015
  • The types of errors corrected by a Korean spelling and grammar checker can be classified into isolated-term spelling errors and context-sensitive spelling errors (CSSE). CSSEs are difficult to detect and to correct, since they are correct words when examined alone. Thus, they can be corrected only by considering the semantic and syntactic relations to their context. CSSEs, which are frequently made even by expert wiriters, significantly affect the reliability of spelling and grammar checkers. An existing Korean spelling and grammar checker developed by P University (KSGC 4.5) adopts hand-made correction rules for correcting CSSEs. The KSGC 4.5 is designed to obtain very high precision, which results in an extremely low recall. Our overall goal of previous works was to improve the recall without considerably lowering the precision, by generalizing CSSE correction rules that mainly depend on linguistic knowledge. A variety of rule-based methods has been proposed in previous works, and the best performance showed 95.19% of average precision and 37.56% of recall. This study thus proposes a statistics based method using a conditional probability model with dynamic window sizes. in order to further improve the recall. The proposed method obtained 97.23% of average precision and 50.50% of recall.