• Title/Summary/Keyword: Knowledge graph

Search Result 225, Processing Time 0.023 seconds

Approximate Top-k Labeled Subgraph Matching Scheme Based on Word Embedding (워드 임베딩 기반 근사 Top-k 레이블 서브그래프 매칭 기법)

  • Choi, Do-Jin;Oh, Young-Ho;Bok, Kyoung-Soo;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.8
    • /
    • pp.33-43
    • /
    • 2022
  • Labeled graphs are used to represent entities, their relationships, and their structures in real data such as knowledge graphs and protein interactions. With the rapid development of IT and the explosive increase in data, there has been a need for a subgraph matching technology to provide information that the user is interested in. In this paper, we propose an approximate Top-k labeled subgraph matching scheme that considers the semantic similarity of labels and the difference in graph structure. The proposed scheme utilizes a learning model using FastText in order to consider the semantic similarity of a label. In addition, the label similarity graph(LSG) is used for approximate subgraph matching by calculating similarity values between labels in advance. Through the LSG, we can resolve the limitations of the existing schemes that subgraph expansion is possible only if the labels match exactly. It supports structural similarity for a query graph by performing searches up to 2-hop. Based on the similarity value, we provide k subgraph matching results. We conduct various performance evaluations in order to show the superiority of the proposed scheme.

Korean Contextual Information Extraction System using BERT and Knowledge Graph (BERT와 지식 그래프를 이용한 한국어 문맥 정보 추출 시스템)

  • Yoo, SoYeop;Jeong, OkRan
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.123-131
    • /
    • 2020
  • Along with the rapid development of artificial intelligence technology, natural language processing, which deals with human language, is also actively studied. In particular, BERT, a language model recently proposed by Google, has been performing well in many areas of natural language processing by providing pre-trained model using a large number of corpus. Although BERT supports multilingual model, we should use the pre-trained model using large amounts of Korean corpus because there are limitations when we apply the original pre-trained BERT model directly to Korean. Also, text contains not only vocabulary, grammar, but contextual meanings such as the relation between the front and the rear, and situation. In the existing natural language processing field, research has been conducted mainly on vocabulary or grammatical meaning. Accurate identification of contextual information embedded in text plays an important role in understanding context. Knowledge graphs, which are linked using the relationship of words, have the advantage of being able to learn context easily from computer. In this paper, we propose a system to extract Korean contextual information using pre-trained BERT model with Korean language corpus and knowledge graph. We build models that can extract person, relationship, emotion, space, and time information that is important in the text and validate the proposed system through experiments.

Ontology Knowledge based Information Retrieval for User Query Interpretation (사용자 질의 의미 해석을 위한 온톨로지 지식 기반 검색)

  • Kim, Nanju;Pyo, Hyejin;Jeong, Hoon;Choi, Euiin
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.245-252
    • /
    • 2014
  • Semantic search promises to provide more accurate result than present-day keyword matching-based search by using the knowledge base represented logically. But, the ordinary users don't know well the complex formal query language and schema of the knowledge base. So, the system should interpret the meaning of user's keywords. In this paper, we describe a user query interpretation system for the semantic retrieval of multimedia contents. Our system is ontological knowledge base-driven in the sense that the interpretation process is integrated into a unified structure around a knowledge base, which is built on domain ontologies.

Network Intrusion Detection Based on Directed Acyclic Graph and Belief Rule Base

  • Zhang, Bang-Cheng;Hu, Guan-Yu;Zhou, Zhi-Jie;Zhang, You-Min;Qiao, Pei-Li;Chang, Lei-Lei
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.592-604
    • /
    • 2017
  • Intrusion detection is very important for network situation awareness. While a few methods have been proposed to detect network intrusion, they cannot directly and effectively utilize semi-quantitative information consisting of expert knowledge and quantitative data. Hence, this paper proposes a new detection model based on a directed acyclic graph (DAG) and a belief rule base (BRB). In the proposed model, called DAG-BRB, the DAG is employed to construct a multi-layered BRB model that can avoid explosion of combinations of rule number because of a large number of types of intrusion. To obtain the optimal parameters of the DAG-BRB model, an improved constraint covariance matrix adaption evolution strategy (CMA-ES) is developed that can effectively solve the constraint problem in the BRB. A case study was used to test the efficiency of the proposed DAG-BRB. The results showed that compared with other detection models, the DAG-BRB model has a higher detection rate and can be used in real networks.

Link Analysis on Institutional Repository web Network of Indian Institute of Technologies Registered in open DOAR-uncovering Patterns and Trends Hidden in the Network

  • Kumar, Kutty
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.8 no.2
    • /
    • pp.23-36
    • /
    • 2018
  • Institutional repositories (IR) are promising to be extremely advantageous to scholars especially in developing countries. IR initiatives started in India during the late nineties and the popularity of this concept is growing rapidly in the higher educational and research institutions to disseminate newly emerging knowledge and expertise. The purpose of this paper is to critically analyze the network links of IR websites among four IITs that are registered in open DOAR (Directory of Open Access Repositories) web portal. The Institutional Repositories chosen for the study are IIT Delhi, IIT Hyderabad, IIT Bombay, and IIT Kanpur. The analysis of the study focused on standard graph and network cohesion metrics, such as density, diameter, eccentricity and distances, and clustering coefficient; for an even more detailed analysis advanced centrality measures and fast algorithms such as clique census are used.

Knowledge-based Decision Support System for Process Planning in the Electric Motor Manufacturing (전동기 제조업의 지식기반 공정계획 지원시스템에 관한 연구)

  • Song, Jung-Su;Kim, Jae-Gyun;Lee, Jae-Man
    • IE interfaces
    • /
    • v.11 no.2
    • /
    • pp.159-176
    • /
    • 1998
  • In the motor manufacturing system with the properties of short delivery and order based production, the process plan is performed individually for each order by the expert of process plan after the completion of the detail design process to satisfy the specification to be required by customer. Also it is hard to establish the standard process plan in reality because part routings and operation times are varied for each order. Hence, the production planner has the problem that is hard to establish the production schedule releasing the job to the factory because there occurs the big difference between the real time to be completed the process plan and the time to be required by the production planner. In this paper, we study the decision supporting system for the process plan based on knowledge base concept. First, we represent the knowledge of process planner as a database model through the modified POI-Feature graph. Then we design and implement the decision supporting system imbedded in the heuristic algorithm in the client/server environment using the ORACLE relational database management system.

  • PDF

Ontology Matching Method Based on Word Embedding and Structural Similarity

  • Hongzhou Duan;Yuxiang Sun;Yongju Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.75-88
    • /
    • 2023
  • In a specific domain, experts have different understanding of domain knowledge or different purpose of constructing ontology. These will lead to multiple different ontologies in the domain. This phenomenon is called the ontology heterogeneity. For research fields that require cross-ontology operations such as knowledge fusion and knowledge reasoning, the ontology heterogeneity has caused certain difficulties for research. In this paper, we propose a novel ontology matching model that combines word embedding and a concatenated continuous bag-of-words model. Our goal is to improve word vectors and distinguish the semantic similarity and descriptive associations. Moreover, we make the most of textual and structural information from the ontology and external resources. We represent the ontology as a graph and use the SimRank algorithm to calculate the structural similarity. Our approach employs a similarity queue to achieve one-to-many matching results which provide a wider range of insights for subsequent mining and analysis. This enhances and refines the methodology used in ontology matching.

Automatic Construction of SHACL Schemas for RDF Knowledge Graphs Generated by Direct Mappings

  • Choi, Ji-Woong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.10
    • /
    • pp.23-34
    • /
    • 2020
  • In this paper, we proposes a method to automatically construct SHACL schemas for RDF knowledge graphs(KGs) generated by Direct Mapping(DM). DM and SHACL are all W3C recommendations. DM consists of rules to transform the data in an RDB into an RDF graph. SHACL is a language to describe and validate the structure of RDF graphs. The proposed method automatically translates the integrity constraints as well as the structure information in an RDB schema into SHACL. Thus, our SHACL schemas are able to check integrity instead of RDBMSs. This is a consideration to assure database consistency even when RDBs are served as virtual RDF KGs. We tested our results on 24 DM test cases, published by W3C. It was shown that they are effective in describing and validating RDF KGs.

Compression Conversion and Storing of Large RDF datasets based on MapReduce (맵리듀스 기반 대량 RDF 데이터셋 압축 변환 및 저장 방법)

  • Kim, InA;Lee, Kyong-Ha;Lee, Kyu-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.4
    • /
    • pp.487-494
    • /
    • 2022
  • With the recent demand for analysis using data, the size of the knowledge graph, which is the data to be analyzed, gradually increased, reaching about 82 billion edges when extracted from the web as a knowledge graph. A lot of knowledge graphs are represented in the form of Resource Description Framework (RDF), which is a standard of W3C for representing metadata for web resources. Because of the characteristics of RDF, existing RDF storages have the limitations of processing time overhead when converting and storing large amounts of RDF data. To resolve these limitations, in this paper, we propose a method of compressing and converting large amounts of RDF data into integer IDs using MapReduce, and vertically partitioning and storing them. Our proposed method demonstrated a high performance improvement of up to 25.2 times compared to RDF-3X and up to 3.7 times compared to H2RDF+.

Computer Aided Drawing Check for CAD Systems A Method for the Checking of Dimensions in Mechanical Part Drawings (CAD시스템을 위한 컴퓨터원용 설계도면검도 -기계부품도의 치수검도방법 -)

  • 이성수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.97-106
    • /
    • 1996
  • Existing CAD systems do not provide advanced functions for automatic checking design and drafting errors in mechanical drawings. If the knowledge of checking in mechanical ddrsfting can be implemented into computers, CAD systems could automatically check for design and drafting errors. This paper describes a method for systematic checking of dimension errors. such as deficiency and/or redundancy of dimension input-errors in dimension figures and symbols, etc. The logic for finding dimensional errors is written by using a proccedural language. A geometric model and a topological-graph model are used in this method. Checking for deficiency and redundancy of dimensions is based upon graph Theory.

  • PDF