• Title/Summary/Keyword: Knot holding capacity

Search Result 2, Processing Time 0.018 seconds

Sliding Knots and the Effect of Additional Half-Hitch Knots on Optimal Knot-Holding Capacity (체이동 매듭과 추가적인 반 매듭 증가에 따른 매듭의 장력 변화와 최적 유지력)

  • Hur, Chang-Yong;Kim, Seung-Ho;Kim, Byung-Kwan;Yoo, Jae-Chul
    • Journal of the Korean Arthroscopy Society
    • /
    • v.8 no.1
    • /
    • pp.37-44
    • /
    • 2004
  • Purpose: To evaluate the optimal number of additional half hitches for achieving an optimal knot-holding capacity (KHC) of Lockable sliding knots. Methods: Four configurations of arthroscopic knots (Duncan loop, Field knot, Giant knot, and SMC knot) were tested for their knot-holding capacity. For each knot configuration, 6 sequential knots were made including the initial sliding knot and additional 5 knots by incrementing one half hitches at a time. Each added half-hitch were in reversing half-hitches with alternate posts (RHAPs) fashion. For each sequential knot configuration, 12 knots were made by No. 2 braided sutures. On the servo-hydraulic material testing system (Instron 8511, MTS, Minneapolis, MN), cyclic loading, load to clinical failure (3-mm displacement), load to ultimate failure, and mode of failure were measured. Results: Most of the initial loop without additional half-hitch showed dynamic failure with cyclic loading. The mean displacement after the end of cyclic loading decreased with each additional half-hitches. SMC and Giant knot reached plateau to 0.1 mm or less displacement after one additional half-hitch, shereas Field and Duncan loop needed 3 additional half-hitches. The SMC and Duncan knots needed 1 additional half-hitch to reach greater than 80N at clinical failure, whefeas the other 2 knots needed2 additional half-hitches. For the load exceeding 100N for clinical failure, the SMC knot required 3 additional half-hitches and the other three knots needed 4 additional half-hitches. As the number of additional half-hitches incremented, the mode of failure switched from pure loop failure (slippage) to material failure (breakage). Duncan loop showed poor loop security in that even with 5 additional half-hitches, some failed by slippage (17%). On the other hand, after 3 additional half-hitches, the 3 other knots showed greater than 75% of failure by material breakage mode (SMC and Field 92%, Giant 75%). Conclusion: Even with its own locking mechanism, lockable sliding knot alone does not withstand the initial dynamic cyclic load. For all tested variables, SMC knot requires a minimum of 2 additional half-hitches. Duncan knot may need more than 3 additional half-hitches for optimal security. All knots showed a mear plateau in knot security with 3 or more additional half-hitches.

  • PDF

The Hallym Slider: A New Arthroscopic Simple Sliding and One-Way Locking Knot (한림 Slider: 쉽게 미끄러지며 단 방향으로 잠김이 되는 새로운 관절경적 매듭)

  • Noh Kyu-Cheol;Chung Yung-Khee
    • Clinics in Shoulder and Elbow
    • /
    • v.8 no.2
    • /
    • pp.117-121
    • /
    • 2005
  • A secure slip knot is very important in the arthroscopic surgery of the shoulder joint. The new 'Hallym Slider', developed by the first author(KCN), has the properties of being a simple sliding and one-way locking knot. This technique can be performed alone without an assistant and has no accidental premature locking during the knot tying. The initial slip knot determines the adequacy of tissue approximation and consequent healing. The 'Hallym Slider' has excellent initial holding capacity, maintaining tension on soft tissue while additional half-hitches are being tied. It locks readily, it takes less time to tie than numerous square knots, and it is not as bulky as other knots. Therefore, we introduce this new sliding and one-way locking knot during the arthroscpic surgery of shoulder.