• Title/Summary/Keyword: Knock Model

Search Result 58, Processing Time 0.025 seconds

Constructing Gene Regulatory Networks using Knock-out Data (Knock-out 데이터를 이용한 유전자 조절망의 구성)

  • Hong, Sung-Ryong;Sohn, Ki-Rack
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.105-113
    • /
    • 2007
  • A gene regulatory network is a network of genes representing how genes influence the activities of other genes. Nowadays from microarray experiments, a large number of measurements on the expression levels of genes are available. One of typical data is the so-called "steady-state model" data measuring the expression levels of other genes after knocking out a particular gene. This paper shows how to reverse engineer a parsimonious gene regulatory network, using these measurement data. Our model considers auto-regulation, which forms a cycle in a genetic network. We also model repressor and enhancer roles of genes. which are not considered in previous known methods.

  • PDF

Buckling behavior of composite cylindrical shells with cutout considering geometric imperfection

  • Heidari-Rarani, M.;Kharratzadeh, M.
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.305-313
    • /
    • 2019
  • Creating different cutout shapes in order to make doors and windows, reduce the structural weight or implement various mechanisms increases the likelihood of buckling in thin-walled structures. In this study, the effect of cutout shape and geometric imperfection (GI) is simultaneously investigated on the critical buckling load and knock-down factor (KDF) of composite cylindrical shells. The GI is modeled using single perturbation load approach (SPLA). First, in order to assess the finite element model, the critical buckling load of a composite shell without cutout obtained by SPLA is compared with the experimental results available in the literature. Then, the effect of different shapes of cutout such as circular, elliptic and square, and perturbation load imperfection (PLI) is investigated on the buckling behavior of cylindrical shells. Results show that the critical buckling load of a shell without cutout decreases by increasing the PLI, whereas increasing the PLI does not have a great impact on the critical buckling load in the presence of cutout imperfection. Increasing the cutout area reduces the effect of the PLI, which results in an increase in the KDF.

Use of Tumor Necrosis Factor Receptor (TNFR)-Knockout Mice to Probe the Mechanism of Chemically-Induced Asthma

  • Karol, Meryl H.;Matheson, Joanna M.;Lange, Robert W.;Lemus, Ranulfo;Luster, Michael I.
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.305-307
    • /
    • 2001
  • Toluene diisocyanate (TDI) is widely used in the manufacture of polyurethanes and is a recognized cause of occupational asthma. Although extensive investigations have been undertaken, the molecular mechanism(s) of the disease is still unclear. We hypothesized that inflammatory cytokines are required during both the sensitization and elicitation phases of the disease and have utilized TNF-R knock-out (KO) mice to address the hypothesis. Black C57 TNFR knock-out mice were exposed to TDI by sc injection and challenged by inhalation of 100 ppb TDI vapor. Control animals included: wild type C57 animals, sham-exposed animals that were challenged with TDI, and animals that were injected with anti-TNF antibodies prior to sensitization and again prior to challenge. Total IgE was increased in the knock-out animals compared with the wild type sensitized and challenged animals whereas TDI-specific IgG antibodies did not differ significantly in KO and wild type animals. There was less inflammation in the nares and trachea in KO animals compared with the wild type animals exposed to TD1 as well as less goblet cell hyperplasia and epithelial damage. Airway reactivity was assessed in animals treated with anti-TNF$\alpha$ antibody and found to be substantially reduced compared with that in sensitized and challenged animals. These results indicate that TNF$\alpha$ plays a role in the immunologic and physiologic responses and in airways inflammation in this animal model and suggests a role for TNF in occupational asthma due to TDI.

  • PDF

Dynamic Simulation of Engine Torque for Hardware-in-the-loop Simulation (엔진 토크의 동적 시뮬레이션에 관한 연구)

  • 조한승;송해박;이종화;고상근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.94-110
    • /
    • 1997
  • In the present study, a mean torque predictive model has been proposed and experimentally validated. It includes induction air mass model, fuel delivery model and mean production mode. Air induction and fuel delivery model considering dynamic behaviors of air induction and fuel delivery were proposed to predict the air-fuel ratio excursions under transient condition. Torque function model reflects thermal efficiency, volumetric efficiency, friction and effect of spark timing. In the spark timing model, knock limit and acceleration retard are included. Experiments were carried out to validate the simulation model for the step changes of throttle at constant engine speed. The results show reasonable agreements between simulation and experiment at fully warmed condition. Using this model, fueling strategies are varied with fast throttle open and it can predict air-fuel ratio excursion and IMEP.

  • PDF

Bone Changes in Femoral Bone of Mice Using Calcein Labeling (Mice에서 Calcein 표지를 이용한 골 변화 관찰)

  • Shim, Moon-Jung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.2
    • /
    • pp.114-117
    • /
    • 2016
  • In vivo labeling of bone with fluorochromes is a widely used method for assessment of bone formation and remodeling processes. In particular, calcein is used as a marker for identification of bone growth, which is indicated by a green color. Calcein green is a calcium chelator that adheres to regions of mineralizing bone thereby allowing localization of new bone. Bone formation and remodeling in vivo can be assessed by calcium-binding calcein labeling. In this study, changes in the femoral bone of a normal mouse model at both 4 and 8 weeks were evaluated using calcein labeling. Intense deposition of calcium in the bone was observed after application for 8 weeks. A mouse model is suitable for application in in vivo experiments using genetically modified mice, such as knock-out mice, however data regarding femoral cross sectional bone in young mice are limited. The current study confirmed calcein as a useful marker for identification of bone growth, which was indicated by a green color on photomicrographs. This methodological process may provide basic information for interpreting bone formation and regeneration to pharmacologic or genetic manipulation in mice.

Column Generation Approach to the Steiner Tree Packing Problem (열 생성 기법을 이용한 스타이너 나무 분할 문제에 관한 연구)

  • 정규웅;이경식;박성수;박경철
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.3
    • /
    • pp.17-33
    • /
    • 2000
  • We consider the Steiner tree packing problem. For a given undirected graph G =(V, E) with positive integer capacities and non-negative weights on its edges, and a list of node sets(nets), the problem is to find a connection of nets which satisfies the edge capacity limits and minimizes the total weights. We focus on the switchbox routing problem in knock-knee model and formulate this problem as an integer programming using Steiner tree variables. The model contains exponential number of variables, but the problem can be solved using a polynomial time column generation procedure. We test the algorithm on some standard test instances and compare the performances with the results using cutting plane approach. Computational results show that our algorithm is competitive to the cutting plane algorithm presented by Grotschel et al. and can be used to solve practically sized problems.

  • PDF

Dynamic Modeling of Building Services Projects: A Simulation Model for Real-Life Hospital Project

  • Abhishek, V.;Jagadeesh, P.
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.3
    • /
    • pp.35-41
    • /
    • 2013
  • All infrastructure projects are said to be inter-dependent, uncertain and labour-intensive in nature. There is no exception for building services sub sector. For a real time project such as 'The construction, extension and refurbishment of Employees' State Insurance Corporation (ESIC) Hospital at Tirupathy, India with total area of 45,000 square feet at an estimated cost of 1100 million rupees, a generic process model is developed to simulate the effect of set of identified variables on construction project. The 'Stocks and Flows' of dynamic model affords relevant insights to project managers, who apply this knowledge when designing better performance through more appropriate project planning. It is concluded from the model-based approach that building services works can be improved through specific better focussed managerial efforts, such as an increasing coordination effectiveness at the planning stage, clarifying prerequisite conditions prior to installations. Otherwise, pending works arising from work clashes can lead to knock-on effects resulting in productivity constraints and pressures, as well as more rework and demolition. Current study reveals that the model enables deep insight into various interdependent processes, their by improving construction performance levels, by addressing the dynamics of design errors and defective works, and recovering delayed schedule.

Prediction of the Viable Operating Range of DME Heel Engine Using Thermal Stratification Based on Numerical Analysis (온도 성층화를 이용한 DME HCCI 엔진의 운전 영역 확장에 관한 수치해석 연구)

  • Jeong, Dong-Won;Kwon, O-Seok;Back, Young-Soon;Lim, Ock-Taeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.4
    • /
    • pp.344-351
    • /
    • 2009
  • A multi-zone model was used to predict the operating range of homogeneous charge compression ignition (HCCI) engine, the boundaries of the operating range were determined by knock (presented by ring intensity), misfire (presented by sensitivity of indicated mean effective pressure to the initial temperature). A HCCI engine fueled with Di-Methyl Ether (DME) was simulated under different initial temperature and equivalence ratios, and the operating range was well produced by the model. Furthermore, the model was applied to develop the operating range for thermal stratification in the preceding condition of initial temperature and equivalence ratios. The computations were conducted using Senkin application of the CHEMKINII kinetics rate code.

Transient Knock Down of Grp78 Reveals Roles in Serum Ferritin Mediated Pro-inflammatory Cytokine Secretion in Rat Primary Activated Hepatic Stellate Cells

  • Wang, Chi-Mei;Li, Shan-Jen;Wu, Chi-Hao;Hu, Chien-Ming;Cheng, Hui-Wen;Chang, Jung-Su
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.605-610
    • /
    • 2014
  • Chronic liver diseases, including cancer, are characterized by inflammation and elevated serum ferritin (SF). However, the causal-relationship remains unclear. This study used primary rat hepatic stellate cells (HSC) as a model to investigate effects of physiological SF concentrations (10, 100 and 1000 pM) because HSCs play a central role in the development and progression of liver fibrosis. Physiological concentrations of SF, either horse SF or human serum, induced pro-inflammatory cytokine $IL1{\beta}$, IL6 and $TNF{\alpha}$ secretion in rat activated HSCs (all p<0.05). By contrast, treatment did not alter activation marker ${\alpha}SMA$ expression. The presence of SF markedly enhanced expression of Grp78 mRNA (p<0.01). Furthermore, transient knock down of Grp78 by endotoxin EGF-SubA abolished SF-induced $IL1{\beta}$ and $TNF{\alpha}$ secretion in activated HSCs (all p<0.05). In conclusion, our results showed that at physiological concentrations SF functions as a pro-inflammatory mediator in primary rat HSCs. We also provide a molecular basis for the action of SF and identified Grp78-associated ER stress pathways as a novel potential therapeutic target for resolution of fibrosis and possible prevention of liver cancer.

Structure and Expression of OsUBP6, an Ubiquitin-Specific Protease 6 Homolog in Rice (Oryza sativa L.)

  • Moon, Yea Kyung;Hong, Jong-Pil;Cho, Young-Chan;Yang, Sae-Jun;An, Gynheung;Kim, Woo Taek
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.463-472
    • /
    • 2009
  • Although the possible cellular roles of several ubiquitin-specific proteases (UBPs) were identified in Arabidopsis, almost nothing is known about UBP homologs in rice, a monocot model plant. In this report, we searched the rice genome database (http://signal.salk.edu/cgi-bin/RiceGE) and identified 21 putative UBP family members (OsUBPs) in the rice genome. These OsUBP genes each contain a ubiquitin carboxyl-terminal hydrolase (UCH) domain with highly conserved Cys and His boxes and were subdivided into 9 groups based on their sequence identities and domain structures. RT-PCR analysis indicated that rice OsUBP genes are expressed at varying degrees in different rice tissues. We isolated a full-length cDNA clone for OsUBP6, which possesses not only a UCH domain, but also an N-terminal ubiquitin motif. Bacterially expressed OsUBP6 was capable of dismantling K48-linked tetra-ubiquitin chains in vitro. Quantitative real-time RT-PCR indicated that OsUBP6 is constitutively expressed in different tissues of rice plants. An in vivo targeting experiment showed that OsUBP6 is predominantly localized to the nucleus in onion epidermal cells. We also examined how knock-out of OsUBP6 affects developmental growth of rice plants. Although homozygous T3 osubp6 T-DNA insertion mutant seedlings displayed slower growth relative to wild type seedlings, mature mutant plants appeared to be normal. These results raise the possibility that loss of OsUBP6 is functionally compensated for by an as-yet unknown OsUBP homolog during later stages of development in rice plants.