• Title/Summary/Keyword: Knee moment

Search Result 185, Processing Time 0.028 seconds

Effects of Combined Wedge on Angle and Moment of Ankle and Knee Joint During Gait in Patients With Genu Varus

  • Yang, Hae Sun;Choi, Houng Sik
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.7 no.2
    • /
    • pp.1025-1030
    • /
    • 2016
  • The purpose of this study was to investigate the effects of combined wedge on the range of motion in ankle and knee joint, ankle eversion moment and knee adduction moment, and center of pressure excursion of foot for genu varus among adult men during gait. This study was carried out with 10 adult men for genu varus in a motion analysis laboratory in J university. The subjects of the experiment were measured above 5cm width between the knees on contact of both medial malleolus of ankle while standing. The width of their knees in neutral position was measured without the inversion or eversion of the subtalar joint by the investigator. The subjects of the experiment were ten who were conducted randomly for standard insole, insole with $10^{\circ}$ lateral on rear foot wedge, insole at $10^{\circ}$lateral on rear foot and $5^{\circ}$ medial on fore foot wedge. Before and after intervention, changes on the range of motion in ankle and knee joint, ankle eversion moment and knee adduction moment, and center of pressure excursion were measured. In order to compare analyses among groups; repeated one-way ANOVA and $Scheff{\acute{e}}$ post hoc test were used. As a result, combined wedge group was significantly decreased compared to control wedge group in terms of knee varus angle in mid-stance(p<.05). Combined wedge group was significantly decreased compared to lateral wedge group in terms of ankle eversion moment in whole stance(p<.05). Combined wedge group was significantly decreased compared to lateral wedge group in terms of knee adduction moment in whole stance(p<.05). Combined wedge group was significantly decreased compared to lateral wedge in terms of center of pressure excursion in whole stance(p<.05). The results of this study suggest that combined wedge for genu varus decreased ankle eversion moment and knee adduction moment upon center of pressure excursion. We hypothesize that combined wedge may also be effective in the protection excessive ankle pronation.

3-Dimensional Gait analysis and the relationship between lower limb alignment and knee adduction moment in elderly healthy women (3차원적 동작 분석기를 이용한 건강한 여자 노인의 하지 정렬 상태와 슬관절 내전 모멘트의 상관 관계에 관한 연구)

  • Cho, You-Mi;Lee, Wan-Hee
    • Journal of Korean Physical Therapy Science
    • /
    • v.10 no.1
    • /
    • pp.90-101
    • /
    • 2003
  • Gait analysis can provide a better understanding of how the alignment of the lower limb and foot can contribute to force observed at the knee. Anatomic and mechanical factors that affect loading in the knee pint can contribute to pathologic change seen at the knee in degenerative pint disease and should be considered in treatment plan. The purpose of this study is to present the gait analysis data and to determine whether there is any relationships between alignment of the lower limb, foot progression angle and knee pint moments in elderly healthy women with 3-dimensional motion analyzer. The results were as follows; 1. Cadence showed 114.8 steps/min, gait speed showed 1.05 m/s, time per a stride showed 1.06 sec, time per a step showed 0.53 sec, single-supporting phase was 0.41 sec, double-supporting phase was 0.24 sec, stride length was 1.04 m, Step length was 0.56 m. 2. According to the parameters of kinematics, the maximal knee flexion angle through swing phase showed left $46.82^{\circ}$, right $40.19^{\circ}$ and the maximal knee extension angle showed left $-1.32^{\circ}$, right $2.01^{\circ}$. knee varus showed left $26.90^{\circ}$, right $30.93^{\circ}$. 3. Moment, one of kinetic parameters of knee pint the maximal flexion moment showed left 0.363. Nm/kg, right 0.464 Nm/kg and maximal extension moment showed left 0.389 Nm/kg, right 0.463 Nm/kg. The maximal. adduction moment showed left 0.332 Nm/kg, right 0.379 Nm/kg and the maximal internal rotatory moment showed left 0.13 Nm/kg, right 0.140 Nm/kg. 4. On sagittal plane, the maximal power of knee joint showed left 0.571 J/kg, right 0.629 J/kg. On coronal plane, the maximal power of knee joint showed left 0.11 J/kg, right 0.12 J/kg. On transverse plane, the maximal power of knee joint showed left 0.058 J/kg, right 0.072 J/kg. 5. The subject who had varus alignment of the lower extremity had statistically higher in knee adduction moment in mid stance phase. 6. The subject who had large foot progression angle had statistically lower in knee adduction moment in late stance phase. A relationship was observed between the alignment of the lower extremity and the adduction moment of the knee joint during stance phase. Hence, we need some research to figure, out the change of adduction moment according to the sort of knee joint osteoarthritis and the normal geriatrics as well. And we also require more effective, specific therapeutic program by making use of those background of researches.

  • PDF

Analysis of Joint Moment in the Intact Limb With Uni-Transfemoral Amputee During Level Walking (편측 대퇴절단자의 보행 시 건측 하지 관절 모멘트 분석)

  • Chang, Yun-Hee;Lee, Wan-Hee
    • Physical Therapy Korea
    • /
    • v.15 no.2
    • /
    • pp.64-72
    • /
    • 2008
  • The purpose of this study was to determine the differences in joint moment in the intact limb of uni-transfemoral amputees and to identify the implications of knee osteoarthritis. As an experimental method, three-dimensional gait analysis was performed on 10 uni-transfemoral amputees and 10 healthy males. Kinematics and kinetics at the hip, knee, and ankle joint were calculated. As a statistical method, independent t-tests were conducted to perform a comparison between the transfemoral amputee group and the control group. The results showed that the external knee adduction moment increased in the transfemoral amputee group (.22 Nm/kg) compared with that of the control group (.13 Nm/kg) at terminal stance (p=.008). External knee flexion moment also increased in the transfemoral amputee group (.24 Nm/kg) but this difference was not statistically significant. External hip flexion moment increased in the transfemoral amputee group (1.35 Nm/kg) compared with that of the control group (.45 Nm/kg) at initial stance, and external hip extension moment decreased in the transfemoral amputee group (-.26 Nm/kg) compared with that of the control group (-.76 Nm/kg) at terminal stance. Although external ankle plantarflexion moment of the transfemoral amputee group increased, it was not found to be statistically significant. The results suggest that the intact limb joint moment of the uni-transfemoral amputees during walking can be different from that of healthy subjects. In conclusion, it was found that there is a link between the increase of external knee adduction moment and the prevalence of knee osteoarthritis in uni-transfemoral amputees. This result is expected to provide some objective data for rehabilitation programs related to knee osteoarthritis in transfemoral amputees.

  • PDF

Clinical Characteristics of Hip Joint Rotations and Knee Adduction Moment through 3D Gait Analysis (3차원 보행분석을 통한 무릎 모음 모멘트와 고관절 내외회전의 임상적 특성)

  • Kim, Yongwook;Kang, Seungmook
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.5 no.4
    • /
    • pp.41-48
    • /
    • 2017
  • Purpose : The purpose of this study was to verify the relationships among the knee adduction moment, hip rotation range, strength of hip rotators, and Foot Posture Index of healthy young adults. Method : Thirty-two healthy adults(24 male, 8 females) participated in this study. Subjects performed 5 walking trials to evaluate the knee adduction moments using a three-dimensional motion analysis system. Hip rotation ranges and hip rotator strengths were measured using a standard goniometer and a handheld dynamometer, respectively. The mean of three trials of clinical tests was used for data analysis. Results : The first peak knee adduction moment was significantly correlated with the hip rotation ranges and hip rotator strengths (P<.05). The second peak knee adduction moment was showed significant correlations with hip external rotation and rotation ratio. There were no correlations between Foot Posture Index and all knee adduction moments (P>.05). Conclusion : This study suggests that imbalances of the range of motion and strength of the internal and external rotation of the hip joint can affect knee adduction moments. The impact may exacerbate musculoskeletal disorders such as osteoarthritis of the knee. Therefore, further studies should be conducted to evaluate the effects of clinical interventions to correct these imbalances on the reduction of the knee adduction moments in patients with knee osteoarthritis.

Development of a Model for the Estimation of Knee Joint Moment at MVC (MVC 상태에서의 무릎관절 모멘트 추정을 위한 모델 개발)

  • Nam, Yoon-Su;Lee, Woo-Eun
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.222-230
    • /
    • 2008
  • This paper introduces a method of estimating the knee joint moment developed during MVC. By combining the Hill-type muscle model and analytic results on moment arm and musculotendon length change as a function of hip and knee joint angle, the knee joint moment at a specific knee joint angle during MVC is determined. Many differences between the estimated results and the experimental data are noted. It is believed that these differences originate from inaccurate information on the muscle-tendon parameters. The establishment of exact values for the subject's muscle parameters is almost impossible task. However, sensitivity analysis shows that the tendon slack length is the most critical parameter when applying the Hill-type muscle model. The effect of a change of this parameter on the muscle length force relationship is analyzed in detail.

Relationship between lower limb alignment and knee adduction moment during ambulation in the healthy elderly (노인의 하지 정렬 상태와 보행 시 슬관절 내전 모멘트 특성)

  • 조유미;홍정화;문무성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.24-24
    • /
    • 2003
  • For the elderly, achieving a close-to-normal ambulation is important for activities of daily life. Recent researches of SE(Silver Engineering) restoring physical ability would help the elderly by developing the advanced gait assisting devices and orthoses. For the applications using the advanced technologies, the gait characteristics of the elderly must be understood. However, a few studies were performed to investigate the physiological or pathological gaits. The purpose of this study is to provide the gait analysis data and also to investigate relationships between alignment of the lower limb, foot progression angle and knee joint moments in the healthy elderly. By participating a total of 20 healthy elderly persons in this study, the following facts were found: 1) Cadence showed 114.8 steps/min, gait speed showed 1.05 m/s, time per a stride showed 1.06 sec, time per a step showed 0.53 sec, single-supporting phase was 0.41 sec, double-supporting phase was 0.24 sec, stride length was 1.04m, Step length was 0.56m; 2) The maximum knee flexion angle through swing phase showed left 46.82$^{\circ}$, right 40.19$^{\circ}$ and the maximum knee extension angle showed left -1.32$^{\circ}$, right 2.01$^{\circ}$. Knee varus showed left 26.90$^{\circ}$, right 30.93$^{\circ}$; 3) The maximum knee flexion moment showed left 0.363 Nm/kg, right 0.464 Nm/kg, The maximum knee extension moment showed left 0.389 Nm/kg, right 0.463 Nm/kg. The maximum knee adduction moment showed left 0.332 Nm/kg, right 0.379 Nm/kg. The maximum internal rotational moment showed left 0.13 Nm/kg, right 0.140 Nm/kg; 4) The subjects who had varus alignment of the lower extremity had statistically higher in knee adduction moment in mid stance phase; and 5) The subjects who had large foot progression angle had statistically lower in knee adduction moment in late stance phase.

  • PDF

Effects of Contralateral and Ipsilateral Cane Use on Knee Moment (동측과 반대편의 지팡이 사용에 대한 무릎의 모멘트 분석)

  • Lee, Hyun-Ok;Yang, Kyung-Hye;Kwon, Yu-Jeong
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.2
    • /
    • pp.117-122
    • /
    • 2014
  • Purpose: The purpose of this study was to compare the effects of force of ipsilateral versus contralateral cane usage on knee moments in healthy young adults. Methods: A convenience sample of 10 subjects volunteered for this study. Subjects walked over a force plate under three different conditions; unaided and ipsilateral cane and contralateral cane. Analysis of data on moment of the knee joint and ground reaction force was performed using the OrthoTrak program. Results: Flexion moment of the knee was decreased with the contralateral cane, but increased with the ipsilateral cane compared with normal gait. Extension moment of the knee was decreased with the contralateral cane compared with normal gait(p<0.05) and it was showed a greater decrease with the contralateral cane than with the ipsilateral cane gait(p=0.00). Valgus moment of the knee joint was increased with the ipsilateral cane but decreased with the contralateral cane. Vertical ground peak force was decreased with the ipsilateral cane compared with normal gait (p<0.05). Conclusion: The following conclusions were drawn from our data. Contralateral cane gait is more efficacious for persons with weakness of knee extensors, however, for a patient with varus deformity, the cane should be used in the ipsilateral hand.

The Study on critical Value of Kinematical Evaluation Variables of Lower Extremity Pronation in Biomechanical Evaluation of Running Shoes (운동화의 생체역학적 평가시 하지 회내운동의 운동학적 평가변인에 대한 상해 기준치 연구)

  • Kwak, Chang-Soo;Jeon, Min-Ju;Kwon, Oh-Bok
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.175-187
    • /
    • 2006
  • The purpose of this study was to find the relationship between Achilles tendon angle, angular velocity from 2D cinematography utilized to easily analyze the functions of shoes, ankle joint moment, knee joint moment, and hip joint moment from 3D cinematography utilized to predict the injury. Also, this study was to provide the optimal standard to analyze the injury related to the shoes. Subjects in this study were 30 university male students and 18 conditions (2 types of running speed, 3 of midsole hardness, 3 of midsole height) were measured using cinematography and force platform. The results were as following. 1) Hip joint abduction moment was effected by many variables such as running speed, midsole height, maximum achilles tendon angle, ground reaction force. 2) Knee joint rotational moment in running was approximately 1/10 - 1/4 times of the injury critical value and eversion moment was approximately 1/4 - 1/2 times of the injury critical value. 3) Ankle joint pronation moment in running was 1/3 - 1/2 times of the injury critical value. 4) Knee joint rotational moment was found to be irrelevant with maximum achilles tendon angle or angular velocity. 5) Pronation from running was thought to be relevant to rather eversion moment activity than rotational moment activity of knee joint. 6) Plantar flexion abductor of ankle showed significant relationship with the ground reaction force variable. 7) When the loading rate for ground reaction force in passive region increased, extensor tended to be exposed to the injury. Main variables in biomechanical analysis of shoes were impact absorption and pronation. Among these variables, pronation factor was reported to be relevant with knee injury from long duration exercise. Achilles tendon angle factor was utilized frequently to evaluate this. However, as the results of this study showed, the relationship between these variables and injury relating variable of knee moment was so important. Studies without consideration on this finding should be reconsidered and reconfirmed.

Effects of Targeted Knee Flexion Angle on the Biomechanical Factors of Upward and Downward Phases during Forward Lunge

  • Lim, Young-Tae;Park, Jun Sung;Lee, Jae Woo;Kwon, Moon-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.125-132
    • /
    • 2017
  • Objective: The aim of this study was to investigate the effect of targeted knee flexion angle on biomechanical factors of knee joint between upward and downward phases during the forward lunge. Method: Eight elderly subjects (age: $22.23{\pm}1.51years$, weight: $69{\pm}6.63kg$, height: $174.88{\pm}6.85cm$) participated in this study. All reflective marker data and ground reaction force during a forward lunge were collected. The knee joint movement and reaction force and joint moment at maximum knee flexion angle were compared by repeated measures one-way analysis of variance (ANOVA) (p<.05). The peak knee joint reaction force and joint moment between upward and downward phases were compared by repeated measures two-way ANOVA (p<.05). Results: The anterior and vertical knee joint movements, reaction force, and extensor moment of $80^{\circ}$ targeted knee flexion condition at maximum knee flexion angle was greater than both $90^{\circ}$ and $100^{\circ}$ conditions (p<.05). The $80^{\circ}$ knee flexed angle condition had greater peak joint reaction force and extensor moment compared with both $90^{\circ}$ and $100^{\circ}$ conditions between upward and downward phases during the forward lunge. Conclusion: As the targeted knee joint flexion angle increases, knee joint movement and kinetic variables become greater during the forward lunge exercise.

The Effects of Landing Height and Distance on Knee Injury Mechanism (착지의 높이와 거리가 무릎 부상 메카니즘에 미치는 영향)

  • Cho, Joon-Haeng;Kim, Ro-Bin
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.2
    • /
    • pp.197-205
    • /
    • 2011
  • Various jumping and landing motions are shown during sports event. But most previous studies have not considered landing height and distance simultaneously. The purpose of this study was to identify the effects of landing height and distance on knee injury mechanism. Fourteen male(age: $28.86{\pm}1.99$ yrs, height: $177.00{\pm}4.69$ cm, weight: $76.50{\pm}6.41$ kg) participated in this study. The subjects attempted drop landing task onto the ground from 30 cm to 45 cm heights and to 20 cm to 40 cm distances. The results were as follows. First, higher drop landing height and longer distance showed greater degree of maximal knee flexion and valgus. Second, higher drop landing height and longer distance showed greater maximal knee extension moment and varus moment. Third, higher drop landing height and longer distance showed larger maximal knee absorption power. Lastly, higher drop landing height showed increased Peak GRF. Landing height was more related to the cause of injury, which was indicated by increased maximal knee extension moment, peak GRF and maximal knee absorption power. Landing distance was also associated with increased knee valgus moment and absorption power during landing. These results suggest that landing height and distance may be the cause of injury.