• Title/Summary/Keyword: Knee Joint Trajectory

Search Result 18, Processing Time 0.022 seconds

Control of an above-knee prosthesis using MR damper (MR 감쇠기를 이용한 무릎 관절 의족의 제어)

  • 김정훈;오준호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.244-244
    • /
    • 2000
  • We proposed the above-knee prosthesis using rotary MR damper in which knee joint is semi-actively controlled by microprocessor. Dissipation torque in the knee joint can be controlled by the magnetic field which is induced by applying current to a solenoid, Tracking control of knee joint angle was tested by 3-DOF Leg simulator. The experimental results show that the proposed above-knee prosthesis system had good performance in swing phase tracking and repetitive controller in conjunction with a computed control law and PD control law, reduced RMS tracking error as the repetitions of tracking. Moreover, desired knee angle trajectory was generated based on the estimation of gait period with the gyro signal and the tracking control was performed.

  • PDF

Design of an 1 DOF Assistive Knee Joint for a Gait Rehabilitation Robot (보행 재활 로봇 개발을 위한 1자유도 무릎 관절 설계)

  • Lee, Sanghyeop;Shin, Sung Yul;Lee, Jun Won;Kim, Changhwan
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.8-19
    • /
    • 2013
  • One of the important issues for structural and electrical specifications in developing a robot is to determine lengths of links and motor specifications, which need to be appropriate to the purpose of robot. These issues become more critical for a gait rehabilitation robot, since a patient wears the robot. Prior to developing an entire gait rehabilitation robot, designing of a 1DOF assistive knee joint of the robot is considered in this paper. Human gait motions were used to determine an allowable range of knee joint that was rotated with a linear type actuator (ball-screw type) and links. The lengths of each link were determined by using an optimization process, minimizing the stroke of actuator and the total energy (kinetic and potential energy). Kinetic analysis was performed in order to determine maximum rotational speed and maximum torque of the motor for tracking gait trajectory properly. The prototype of 1 DOF assistive knee joint was built and examined with a impedance controller.

Nonlinear Damper Model for the Quantification of joint Mechanical Properties (관절계 역학적 특성의 정량화를 위한 비선형 댐퍼모델)

  • EOM Gwang-Moon;LEE Chang-Han;KIM Chul-Seung;Heo Ji-Un
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.188-193
    • /
    • 2005
  • The purpose of this paper is to develop a more precise damper model of the joint for the quantification of the joint mechanical properties. We modified the linear damper model of a knee joint model to nonlinear one. The normalized RMS errors between the simulated and measured joint angle trajectories during passive pendulum test became smaller with the nonlinear damper model than those of the linear one which indicates the nonlinear damper model is better in precision and accuracy. The error between the experimental and simulated knee joint moment also reduced with the nonlinear damper model. The reduction in both the trajectory error and the moment error was significant at the latter part of the pendulum test where the joint angular velocity was small. The nonlinearity of the damper was significantly greater at thin subject group and this indicates the nonlinearity is a useful index of joint mechanical properties.

Kinematic Comparative Analysis of Long Turns between Experienced and Inexperienced Ski Instructors

  • Jo, Hyun Dai
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • Objective: The purpose of this study is to provide a better understanding of long turn mechanism by describing long turns after kinematic analysis and provide skiers and winter sports instructors with data through which they are able to analyze right postures for turns in skiing in a systematic, rational and scientific manner. Method: For this, a mean difference of kinematic variables (the center of gravity (CG) displacement of distance, trajectory, velocity, angle) was verified against a total of 12 skiers (skilled and unskilled, 6 persons each), regarding motions from the up-start to down-end points for long turns. Results: First, concerning the horizontal displacement of CG during a turn in skiing, skilled skiers were positioned on the right side at the upstart and edge-change points at a long turn. There was no difference in anteroposterior and vertical displacements. Second, in terms of CG-trajectory differences, skilled skiers revealed a significant difference during a long turn. Third, regarding skiing velocity, skilled skiers were fast at the edge-change and maximum inclination points in long turns. Fourth, there was no difference in a hip joint in terms of a lower limb joint angle. In a knee joint, a large angle was found at the up-start point among skilled skiers when they made a long turn. Conclusion: In overall, when skilled and unskilled skiers were compared, to make a good turn, it is required to turn according to the radius of turn by reducing weight, concerning the CG displacement. Regarding the CG-trajectory differences, the edge angle should be adjusted via proper inclination angulation. In addition, a skier should be more leaned toward the inside of a turn when they make a long turn. In terms of skiing velocity, it is needed to reduce friction on snow through the edging and pivoting of the radius or turn according to curvature and controlling ski pressure. Regarding a lower limb joint angle, it is important to make an up move by increasing ankle and knee angles instead of keeping the upper body straight during an up motion.

Trajectory Optimization for Biped Robots Walking Up-and-Down Stairs based on Genetic Algorithms (유전자 알고리즘을 이용한 이족보행 로봇의 계단 보행)

  • Jeon Kweon-Soo;Kwon O-Hung;Park Jong-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.75-82
    • /
    • 2006
  • In this paper, we propose an optimal trajectory for biped robots to move up-and-down stairs using a genetic algorithm and a computed-torque control for biped robots to be dynamically stable. First, a Real-Coded Genetic Algorithm (RCGA) which of operators are composed of reproduction, crossover and mutation is used to minimize the total energy. Constraints are divided into equalities and inequalities: Equality constraints consist of a position condition at the start and end of a step period and repeatability conditions related to each joint angle and angular velocity. Inequality constraints include collision avoidance conditions of a swing leg at the face and edge of a stair, knee joint conditions with respect to the avoidance of the kinematic singularity, and the zero moment point condition with respect to the stability into the going direction. In order to approximate a gait, each joint angle trajectory is defined as a 4-th order polynomial of which coefficients are chromosomes. The effectiveness of the proposed optimal trajectory is shown in computer simulations with a 6-dof biped robot that consists of seven links in the sagittal plane. The trajectory is more efficient than that generated by the modified GCIPM. And various trajectories generated by the proposed GA method are analyzed in a viewpoint of the consumption energy: walking on even ground, ascending stairs, and descending stairs.

Design of Robotic Prosthetic Leg for Above-knee Amputees (대퇴 절단자들을 위한 로봇 의지의 설계)

  • Yang, Un-Je;Kim, Jung-Yup
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.913-922
    • /
    • 2014
  • This paper describes design of a robotic above-knee prosthetic leg which is powered by electrical motors. As a special feature, the robotic prosthetic leg has enough D.O.F.s. For mimicking the human leg, the robotic prosthetic leg is composed of five joints. Three of them are called 'active joint' which is driven by electrical motors. They are placed at the knee-pitch-axis, the ankle-pitch-axis, and the an! kle-roll-axis. Every 'active joint' has enough torque capacity to overcome ground reaction forces for walking and is backlashless for accurate motion generation and high-performance balance control. Other two joints are called 'passive joint' which is activating by torsion spring. They are placed at the toe part and designed by Crank-rocker mechanism using kinematic design approach. In order to verify working performance of the robotic prosthetic leg, we designed a gait trajectory through motion capture technique and experimentally applied it to the robot.

Energy Optimization of a Biped Robot for Walking a Staircase Using Genetic Algorithms

  • Jeon, Kweon-Soo;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.215-219
    • /
    • 2003
  • In this paper, we generate a trajectory minimized the energy gait of a biped robot for walking a staircase using genetic algorithms and apply to the computed torque controller for the stable dynamic biped locomotion. In the saggital plane, a 6 degree of freedom biped robot that model consists of seven links is used. In order to minimize the total energy efficiency, the Real-Coded Genetic Algorithm (RCGA) is used. Operators of genetic algorithms are composed of a reproduction, crossover and mutation. In order to approximate the walking gait, the each joint angle is defined as a 4-th order polynomial of which coefficients are chromosomes. Constraints are divided into equality and inequality. Firstly, equality constraints consist of position conditions at the end of stride period and each joint angle and angular velocity condition for periodic walking. On the other hand, inequality constraints include the knee joint conditions, the zero moment point conditions for the x-direction and the tip conditions of swing leg during the period of a stride for walking a staircase.

  • PDF

Walking Pattern Analysis for Reducing Trajectory Tracking Error in a Biped Robot (이족보행로봇의 궤적 추종 오차 감소를 위한 걸음새 분석)

  • 노경곤;공정식;김진걸
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.890-897
    • /
    • 2002
  • This paper deals with the reduction of trajectory tracking error by changing the initial postures of a biped robot. Gait of a biped robot depends on the constraints of mechanical kinematics and the initial states including the posture. Also the dynamic walking stability in a biped robot system is analyzed by zero moment point(ZMP) among the stabilization indices. Path trajectory, in which knee joint is bent forward like human's cases, is applied to most cases considered with above conditions. A new initial posture, which is similar to bird's gait, is proposed to decrease trajectory tracking error and it is verified through real experimental results.

The Relationship among Stride Parameters, Joint Angles, and Trajectories of the Body Parts during High-Heeled Walking of Woman

  • Park, Sumin;Lee, Minho;Park, Jaeheung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.245-252
    • /
    • 2013
  • Objective: This paper analyzes the changes on stride parameters, joint angles, and trajectories of the body parts due to high heels during walking and explains the causal relationship between the changes and high heels. Background: This study aims to indicate the comprehensive gait changes by high heels on the whole body for women wearing high heels and researchers interested in high-heeled walking. Method: The experiment was designed in which two different shoe heel heights were used for walking (1cm, 9.8cm), and twelve women participated in the test. In the experiment, 35 points on the body were tracked to extract the stride parameters, joint angles, and trajectories of the body parts. Results: Double support time increased, but stride length decreased in high-heeled walking. The knee inflexed more at stance phase and the spine rotation became more severe. The trajectories of the pelvis, the trunk and the head presented outstanding fluctuations in the vertical direction. Conclusion: The double support time and the spine rotation were changed to compensate instability by high heels. Reduced range of motion of the ankle joint influenced on the stride length, the knee flexion, and fluctuations of the body parts. Application: This study can provide an insight of the gait changes by high heels through the entire body.

The usage of convergency technology for ROGA algorithm application on step walking of biped robot (이족 로봇의 계단 보행에서 Real-Coded Genetic Algorithm 의 융합 기술의 사용)

  • Lee, Jeong-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.5
    • /
    • pp.175-182
    • /
    • 2020
  • The calculation of the optimal trajectory of the stepped top-down robot was made using a genetic algorithm and a computational torque controller. First, the total energy efficiency was minimized using the Red-Cold Generic Algorithm (RCGA) consisting of reproductive, cross, and mutation. The reproducibility condition related to the position assembly of the start and end of the stride and the joints, angles, and angular velocities are linear constraints. Next, the unequal constraint accompanies the condition for preventing the collision of the swing leg at the corner with the outer surface of the stairs, the condition of the knee joint for preventing kinematic peculiarity, and the condition of no moment in safety in the traveling direction. Finally, the angular trajectory of each joint is defined by fourth-order polynomial whose coefficient is to approximate chromosomes. This is to approximate walking. In this study, the energy efficiency of the optimal trajectory was analyzed by computer simulation through a biped robot with seven degrees of freedom composed of seven links.