• Title/Summary/Keyword: Klebsiella pneumoniase

Search Result 2, Processing Time 0.014 seconds

Radiolytic Synthesis of Ag-Loaded Polystyrene(Ag-PS) Nanoparticles and Their Antimicrobial Efficiency Against Staphylococcus aureus and Klebsiella pneumoniase

  • Oh, Seong-Dae;Byun, Bok-Soo;Lee, Seung-Ho;Choi, Seong-Ho;Kim, Moon-Il;Park, Hyun-Gyu
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.285-290
    • /
    • 2007
  • Ag nanoparticles were distributed onto polystyrene nanoparticle (PS-Ag) beads using two synthetic methodologies. In the first methodology, polystyrene (PS) beads were prepared via emulsion polymerization, with Ag nanoparticles subsequently loaded onto the surface of the PS beads. The polymerization of styrene was radiolytically induced in an ethanol (EtOH)/water medium, generating PS beads. Subsequently, Ag nanoparticles were loaded onto the PS beads via the reduction of Ag ions. The results from the morphological studies, using field emission transmission electron microscopy (FE-TEM), reveal the PS particles were spherical and nanosized, and the average size of the PS spherical particles decreased with increasing volume % of water in the polymerization medium. The size of the PS spherical particles increases with increasing radiation dose for the polymerization. Also, the amount of Ag nanoparticle loading could be increased by increasing the irradiation dose for the reduction of the Ag ions. In the second methodology, the polymerization of styrene and reduction of Ag ions were simultaneously performed by irradiating a solution containing styrene and Ag ions in an EtOH/water medium. Interestingly, the Ag nanoparticles were preferentially homogeneously distributed within the PS particles (not on the surface of the PS particles). Thus, Ag nanoparticles were distributed onto the surface of the PS particles using the first approach, but into the PS clusters of the particles via the second. The antimicrobial efficiency of a cloth coated with the Ag-PS composite nanoparticles was tested against bacteria, such as Staphylococcus aureus and Klebsiella pneumoniase, for 100 water washing cycles.

Preparation of Ag-PS and Ag-PSS Particles by ${\gamma}$-Irradiation and Their Antimicrobial Efficiency against Staphylococcus aureus ATCC 6538 and Klebsiella pneumoniae ATCC 4352

  • Oh Seong-Dae;Byun Bok-Soo;Lee Seung-Ho;Choi Seong-Ho
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.194-198
    • /
    • 2006
  • Polystyrene, PS, particles of 450 nm diameter and poly(styrene-co-styrene sulfonate), PSS, particles of 140-160 nm diameter were prepared by emulsifier-free emulsion polymerization. The surfaces of the PS and PSS particles were coated with Ag nanoparticles for the application of antimicrobial agents by reduction of Ag ions using ${\gamma}$-irradiation. The Ag-PS and Ag-PSS were characterized by High-Resolution Transmittance Electron Microscopy (HR-TEM), Field-Emission Scanning Electron Microscopy (FE-SEM), and Energy Dispersive X-ray Spectroscopy (EDXS). The HR-TEM and EDXS data showed that the Ag nanoparticles were loaded on the surface of the PS and PSS particles, respectively. The antimicrobial efficiency of the Ag-PS and Ag-PSS particles (0.4 g) with ca. 100 ppm Ag, which was coated onto yam (KS K 0905-1996 rule), was tested against Staphylococcus aureus ATCC 6538 and Klebsiella pneumoniae ATCC 4352 after 100 washing cycles (KS K 0432-1999 rule). The antimicrobial efficiency of the Ag-PS particles against Staphylococcus aureus ATCC 6538 and Klebsiella pneumoniae ATCC 4352 was 99.9% after 100 cycles washing., confirming that the Ag-PS particles can be used as antimicrobial agents.