• Title/Summary/Keyword: Kiyoung

Search Result 320, Processing Time 0.025 seconds

Impact of the Smoke-free Law on Secondhand Smoke in Computer Game Rooms (금연정책 시행이 전국 PC방의 간접흡연에 미치는 영향)

  • Guak, Sooyoung;Lee, Kiyoung;Kim, Sungreol;Kim, Sungcheon;Yang, Wonho;Ha, Kwonchul
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.1
    • /
    • pp.11-16
    • /
    • 2015
  • Objectives: This study assessed the impact of the smoke-free law on secondhand smoke exposure in computer game rooms by measuring concentrations of particulate matter smaller than $2.5{\mu}m$($PM_{2.5}$). Methods: Indoor $PM_{2.5}$ concentrations were measured in 56 (during the smoke-free guidance period) and 118 computer game rooms (after the law went into effect) in four cities (Seoul, Cheonan, Daegu and Kunsan) in Korea. The number of smokers in the computer game rooms was also counted every five minutes. Results: Although a smoking ban had been implemented nationally, smoking was observed in 47% of the computer game rooms. Smoking density decreased from 1.62 persons per $100m^3$ during the guidance period to 0.32 persons per $100m^3$ after the smoke-free law. There is no statistically significant difference of $PM_{2.5}$ concentrations before and after the smoking ban. The $PM_{2.5}$ concentration was two times higher than the US NAAQS of $35{\mu}g/m^3$. The $PM_{2.5}$ concentration in computer game rooms without smokers was two times higher than the outdoor concentration. Conclusion: The smoke-free law in computer game rooms was complied with, even after the guidance period, in Korea. Indoor $PM_{2.5}$ concentration after smoke-free law implementation was high due to this non-compliance. High $PM_{2.5}$ concentration in computer game rooms without smokers might be due to smoking booths. The complete prohibition of smoking in computer game rooms should be implemented to protect patrons from secondhand smoke exposure.

Exploring a Learning Progression for Eight Core Concepts of Middle School Science Using Constructed Response Items in the National Assessment of Educational Achievement (NAEA) (국가수준 학업성취도 평가의 서답형 문항을 이용한 중학교 과학 8개 핵심 개념에 대한 학습발달과정 탐색)

  • Lee, Kiyoung;Dong, Hyokwan;Choi, Wonho;Kwon, Gyeongpil;Lee, Inho;Kim, Yong-Jin
    • Journal of Science Education
    • /
    • v.41 no.3
    • /
    • pp.382-404
    • /
    • 2017
  • This study aims to explore a learning progression for eight core concepts of middle school science using constructed response items in the national assessment of educational achievement (NAEA). For this purpose, a total of 7,390 responses of the 9th graders on 8 constructed response items in NAEA conducted in 2015 were inputted by computer and the inputted answers were analyzed and classified into different levels. After completing this process, five levels were set for each construct and a construct map was created according to the levels. In this study, the construct map was written in a progression-based rubric format, which was used as a criterion for leveling the answers of all students. In addition, the Rasch model was applied to measure the scores and achievements of the respondents by means of statistical analysis to correlate the scores of the students with the achievement levels of the constructs. Lastly, a preliminary learning progression was created by revising the construct map reflecting the results of Rasch model application. This study was meaningful in that it explored the possibility of developing the learning process by using constructed response items in NAEA. However, the preliminary learning progression developed in this study is still hypothetical and inferential because it is not longitudinally traced to individual students. Therefore, it is necessary to continually revise and supplement through iterative research process.

An Analysis of Systems Thinking Revealed in Middle School Astronomy Classes: The Case of Science Teachers' Teaching Practices for the Unit of Stars and Universe (중학교 과학 천문 수업에서 나타나는 시스템 사고 분석: 별과 우주 단원에 대한 과학 교사의 교수 실행 사례)

  • Oh, Hyunseok;Lee, Kiyoung;Park, Young-Shin;Maeng, Seungho;Lee, Jeong-A
    • Journal of the Korean earth science society
    • /
    • v.36 no.6
    • /
    • pp.591-608
    • /
    • 2015
  • The purpose of this study was to analyze system thinking revealed in science teachers' teaching practices of middle school astronomy classes. Astronomy lessons were video-taped from four eighth grade science teachers. The video recordings were all transcribed and analyzed by employing a framework for systems thinking analysis after modifying an existing frame of hierarchial structure used in relevant previous studies. In addition, four participants were interviewed in order to uncover their orientation toward teaching using video stimulated recall method. Findings are as follows: All participating teachers were not able to employ the four levels of system thinking appropriately and only utilized the low level of systems thinking. They also demonstrated teacher-centered practices for employing system thinking despite their student-centered orientation toward teaching. The main reason for these results may be that teachers focused more on spatial thinking, than on system thinking as well as the lack of teacher's knowledge about the content and formative assessment of non-earth science teachers. Implications on how to effectively employ the system thinking in astronomy class are discussed in this paper.

A Proposal of Curriculum and Teaching Sequence for Seasonal Change by Exploring a Learning Progression (학습 발달과정 탐색을 통한 계절의 변화 교육과정 및 교수 계열 제안)

  • Heo, Jaewan;Lee, Kiyoung
    • Journal of the Korean earth science society
    • /
    • v.39 no.3
    • /
    • pp.260-274
    • /
    • 2018
  • The purpose of this study was to propose curriculum and teaching sequence for seasonal change by exploring a learning progression. For the purpose, 4 steps of construct modeling approach (specifying construct, item design, outcome space, and measurement model) proposed by Wilson (2005) was applied. In the stage of specifying construct, 'length of shadow according to seasons', 'position of constellation according to seasons', 'seasons of the southern hemisphere and northern hemisphere', 'cause and phenomenon of seasonal change' were selected as the subconstructs of seasonal changes, and constructed a construct map showing the level of development from level 1 to level 4 for each subconstruct based on the results of the previous research. In the item design stage, we developed five assessment items consisting of 3 items in the form of C-E (choose and explain) and two items in the form of CR (constructed response), applied it to 383 elementary, middle and high school students. In the outcome space stage, the students' responses to the assessment items were categorized based on the construct map. The categories were classified into 4 levels according to student ability and scores of 1-4 were given. In the measurement model stage, we applied the partial credit model of the Rasch model and compared whether the learning pathway created from the results of students' response coincides with the construct map. Based on the results of the research, we modified the construct map and finally created hypothetical learning progression on seasonal change. Finally, we proposed an orientation of curriculum amendment and effective teaching sequence for seasonal change.

The Development and Validation of Learning Progression for Solar System Structure Using Multi-tiers Supply Form Items (다층 서답형 문항을 이용한 태양계 구조 학습 발달과정 개발 및 타당성 검증)

  • Oh, Hyunseok;Lee, Kiyoung
    • Journal of the Korean earth science society
    • /
    • v.41 no.3
    • /
    • pp.291-306
    • /
    • 2020
  • In this study, we developed a learning progression for the structure of the solar system using multi-tier supply form items and validated its appropriateness. To this end, by applying Wilson's (2005) construct modeling approach, we set up 'solar system components,' 'size and distance pattern of solar system planets,' and 'solar system modeling' as the progress variables of the learning progression and constructed multi-tier supply form items for each of these variables. The items were applied to 150 fifth graders before and after the classes that dealt with the 'solar system and star' unit. To describe the results of the assessment, the students' responses to each item were categorized into five levels. By analyzing the Wright map that was created by applying the partial credit Rasch model, we validated the appropriateness of the learning progression based on the students' responses. In addition, the validity of the hypothetical pathway that was established in the learning progression was verified by tracking changes in the developmental level of students before and after the classes. The results of the research are as follows. The bottom-up research method that used multi-tier supply form items was able to elaborately set the empirical learning progression for the conceptualization of the structure of the solar system that is taught in elementary school. In addition, the validity of the learning progression was high, and the development of students was found to change with the learning progression.

The Analysis of the Factors of the Effectiveness of Science Teacher as Perceived by Students through the Perspective of Teacher Knowledge (교사 지식의 관점에서 학생들이 인식하는 과학 교사 효과성 요인 분석)

  • Lee, Kiyoung;Park, Jaeyong
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.7
    • /
    • pp.625-634
    • /
    • 2014
  • This study has investigated the factors that make a science teacher effective by analyzing students' perception of teacher knowledge required in enhancing their science learning. The basic components of teacher knowledge identified by previous researchers have been confirmed through Exploratory Factor Analysis (EFA). Based on the findings of the EFA, the questionnaire has been further analyzed using Confirmatory Factor Analysis (CFA) by means of Structural Equation Modeling (SEM). In addition, the differences in students' perception on the identified factors of effectiveness have also been analyzed in terms of gender and achievement level. The findings of the EFA showed that five factors of science teacher effectiveness were identified; namely, substantive knowledge, syntactic knowledge, knowledge of students' understandings, knowledge of instructional strategies, and knowledge of assessment. These five components have been divided into two categories of teacher knowledge, SMK and PCK. What we found from the CFA was the respective high correlation between substantive and syntactic knowledge, knowledge of students' understanding and instructional strategies and the low correlation between substantive knowledge and knowledge of instructional strategies. Students perceived substantive knowledge as the most effective factor, knowledge of assessment as the least effective factor. Also, there have been considerable differences in students' perception by gender and achievement level. We proposed, based on the findings, that SMK and PCK need to be integrated into a coherent manner for the effective science teaching practice. This study provides some implications for science teacher professional development and the improvement of science teacher preparation program.

Exploring the Effect of First Year Science-Focused School Program on High School Students' Science Core Competency and Science Learning Motivation Using Group-Based Trajectory Modeling (집단중심 추세모형을 이용한 과학중점학교 1학년 프로그램이 고등학생들의 과학과 핵심역량과 과학학습동기에 미치는 영향 탐색)

  • Ha, Minsu;Lee, Kiyoung;Choi, Eunhwan;Kim, Ilchan;Yu, Jihye;Won, Bokyeon
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.6
    • /
    • pp.799-807
    • /
    • 2019
  • The study was conducted to identify if the first-year program of science-focused school improved students' scientific core competency and science learning motivation. The first-year program of the science-focused school consisted of basic education in scientific inquiry, investigation, advanced experiment, and basic education in small research. There were a total of 262 participants in the program, and 169 students took three survey tests. Through the analysis of a group-based trajectory modeling, students were differentiated based on similarity of score changes. This study showed that the first-year program of the science-focused school significantly improved students' scientific core competency and science learning motivation. A group-based trajectory modeling found that about 40~60% of students saw the effects of the program. The students who chose the humanity track showed effects, while some students who chose the science-focused track did not show effects. A group-based trajectory modeling showed the methodological effects of identifying the change process of individual students. This study identified the positive effects of science-focused school policy statistically and is a meaningful example for analyzing the effectiveness of science-focused school programs.

Assessment of the Electromagnetic Pulse Shield Effectiveness of the Wave-guided Below Cutoff Filled with Water and Oil for Guaranteeing the Operational Sustainment of the Command Post (지휘소 작전지속성 보장을 위한 도파관의 전자기파 차폐성능 향상방안)

  • Yoon, Sangho;Son, Kiyoung;Kim, Suk Bong;Park, Young Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.6
    • /
    • pp.579-584
    • /
    • 2013
  • The stable fueling and water supply should be prerequisites to guarantee the operational sustainment of military command post. Meanwhile, in terms of the operational sustainment, it is verified that the current wave-guided below cutoff (WBC) system cannot satisfy the requirement of control associated with water supply and fueling within the command post. In this study, as the dielectric substance can block electromagnetic pulse (EMP), it was tried to identify the shielding effectiveness of the multi WBCs filled with water and diesel for attenuating the EMP effect using experiment based on the MIL STD 188-125-1. According to the experimental results, used water in the experiment show the shielding effectiveness from around 640 MHz frequency because of minerals contained in the water. Furthermore, it was noted that EMP attenuating strength of the WBC filled with diesel was enlarged from around 1,680 MHz frequency. Resultingly, it could be concluded that it is enough to supply stable water and diesel through the multi WBC to block EMP within the military command post for guaranteeing the military operations sustainment.

Analysis of Primary Internal and External Risk Factors According to the Accident Causes in Construction Site (건설현장의 사고원인에 따른 내·외부 리스크 핵심 요인 분석)

  • Yu, Yeong-Jin;Kim, Taehui;Son, Kiyoung;Lee, Kyoung-Hun;Kim, Ji-Myong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.519-527
    • /
    • 2016
  • The demand of construction risk analysis is rapidly increased to improve the competitiveness of construction companies and the sound management of the construction project. However, estimating the amount and uncertainty of the risk is difficult due to the wide range of risks in the construction industry. Moreover, most of the research on risk management of construction risk is only focused on the causes of risk without separate the internal and external risk. This study statistically analysis the internal risk and external risk based on the accidents cases which are caused at construction sites to define the difference and importances of the risk. An accident cause analysis and T-test analysis are carried out to reach the goal of study. The results of the study are expected to be used as a guideline of construction project risk analysis.

Exploring a Learning Progression for Integrated Process Skills in Earth Science Inquiry (지구과학 탐구에서 통합 탐구 기능에 대한 학습발달과정 탐색)

  • Lee, Kiyoung;Park, Jaeyong
    • Journal of the Korean earth science society
    • /
    • v.38 no.3
    • /
    • pp.222-238
    • /
    • 2017
  • The purpose of this study is to explore a learning progression for integrated process skills in Earth science inquiry. For the purpose, a hypothetical learning progression (HLP) that capture how students' integrated process skills of science become sophisticated over time is developed through the literature review. This learning progression contains four components of the integrated process skills of science: designing inquiry, collecting data, analyzing data, and forming conclusion. Three hypothetico-deductive inquiry tasks of Earth science that start from recognition of the given problem to the forming conclusion are developed in order to document students' integrated process skills. A total of 126 students from middle, high, college level students participated in this study. After conducting the Earth science inquiry tasks, the integrated process skills of individual students are assessed by element based on HLP. In addition, the validation process for HLP was administered by applying the Rasch model using the students' assessment data. Finally, based on the analyzed data, the empirical learning progression (ELP) is developed by revising and supplementing the HLP. This study can help to find scaffolding methods to effectively improve the students' integrated process skills in Earth science inquiry class by identifying the factors that affect students' development of integrated process skills. It also provide implications for improving teachers' PCK of Earth science inquiry instruction.