• Title/Summary/Keyword: Kinetic movement

Search Result 173, Processing Time 0.02 seconds

Effect of Shoulder Abduction Angles on EMG Activity of the Abdominal Muscles during Single Leg Holding on the Foam Roller

  • Yun, Sung joon;Kim, Jun hee
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.4
    • /
    • pp.228-232
    • /
    • 2020
  • Purpose: This study examined the electromyography (EMG) activity of the abdominal muscles and the ratio of the oblique abdominal muscle activity to the rectus abdominis muscle during a single-leg holding position with isometric shoulder abduction (SLHISA) in the supine position on a foam roller. Methods: Nineteen healthy males were recruited to the study. Each subject was asked to lay on a round foam roller and perform singleleg (nondominant) holding with contralateral shoulder abduction to one of three angles (45°, 90°, or 135°) in random order. The surface EMG signals of the bilateral rectus abdominis (RA), external oblique abdominis (EO), and combined internal oblique abdominis (IO) and transverse abdominis (TrA) muscle were collected during the tasks. The EO/RA and (IO & TrA)/RA ratios were determined using surface EMG. One way repeated measure ANOVA with three SLHISAs was used to assess the significant abdominal muscle EMG activity and the ratio of the oblique abdominal muscles activity to the RA muscle. The statistical significance level was p<0.05. Results: The results were as follows. The SLHISA 135° showed significantly higher EMG activity of both RAs, left EO, and right IO & TrA muscles (p<0.05). The right EO and left IO and TrA muscles/RA were significantly different among the SLHISA angles. The SLHISA 45° showed a significantly greater ratio of right EO/RA and left IO & TrA/RA (p<0.05). Conclusion: SLHISA on a foam roller is useful for lumbopelvic stabilization exercise by increasing the activity and recruiting a specific pattern of the oblique abdominal muscle.

Kinetic comparative analysis of tennis backhand stroke for interdisciplinary convergence research (학제간 융합연구를 위한 테니스 백핸드 스트로크 동작의 운동역학적 비교 분석)

  • Cha, Jung-Hoon
    • Journal of Digital Convergence
    • /
    • v.13 no.7
    • /
    • pp.373-380
    • /
    • 2015
  • This study which was conducted on male tennis player on one hand(OH) & two hand(TH) backhand stroke and how both motion differed on low extremity movement with each feature analyzed in detail, the result as follow. The motion of TH based on resultant velocity, appeared to be a higher than OH, which was important variable in determining the ball speed. Contrary to TH where the player minimized the motion in the lower body and finalized a stroke through the turn of the trunk as if sticking the ball closed to the body, OH was carried out such that the player appeared to chase the ball. Whereas in OH, the knee joint extension moment was not found to be larger than TH, the opposite result came out for abduction moment and internal rotation moment. In the case of hip joint, consisted of extension, abduction and internal rotation moment, the outcome emerged to be greater for TH with conspicuous difference in abduction moment. Flection moment for TH overwhelmed in TH though both adduction and external rotation moment brought about similar outcome for both strokes.

Effect of Artificial Leg Length Discrepancy on 3D Hip Joint Moments during Gait in Healthy Individuals (건강한 성인에서 인위적 다리길이 차이가 보행 중 3차원 엉덩관절 모멘트에 미치는 효과)

  • Jo, Min-Ji;Kim, Dong-Hyun;Han, Dong-Wook;Choi, Eun-Jin;Kim, Ye-Seul;Kim, Yong-Wook
    • PNF and Movement
    • /
    • v.17 no.3
    • /
    • pp.391-399
    • /
    • 2019
  • Purpose: This study investigated the three-dimensional moment values of the hip joint for subjects with artificial leg length alterations and subjects with unaltered leg lengths. Methods: Forty-two healthy adults (8 men, 34 women) participated in this study. The selected subjects were able to walk normally, had less than a 1 cm leg length discrepancy, and were instructed to wear shoes that fit their feet. The study participants performed 8 dynamic gait trails to measure the hip joint moment using a three-dimensional motion analysis system. Kinetic and dynamic three-dimensional gait analysis data were collected from infrared cameras, and a force plate was used to standardize the weight of each subject. Results: There were significant correlations between the differences in the leg length discrepancy during right extension, right flexion, right internal rotation, and left extension in hip joint moments (p<0.05). There were significant correlations between the differences in shoe conditions during left extension, right flexion, right extension, and right internal rotation in the hip moments (p<0.05). Conclusion: This study suggests that a leg length discrepancy can affect hip joint moment, which may further exacerbate musculoskeletal disorders, such as osteoarthritis in lower extremity joints. Therefore, further studies should be conducted to verify the impact of clinical interventions on differences in hip joint moment values to correct leg length discrepancies and prevent osteoarthritis in lower extremity joints.

Ankle Evertor Strength of Healthy Subjects in Different Ankle and Toe Positions

  • Ahn, Sun-hee;Kim, Hyun-a;Kim, Jun-hee;Kwak, Kyung-tae;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.26 no.3
    • /
    • pp.84-90
    • /
    • 2019
  • Background: Ankle evertor muscles are important for preventing lateral ankle sprain. Since, the evertor muscles cross the ankle and toe joints, the position at which the ankle evertor muscle strength is measured is important. However, no studies have previously investigated the effect of ankle and toe positions on the strength of the ankle evertor muscle. Objects: This study is aimed to determine the effect of various ankle and toe joint positions on the strength of the ankle evertor muscles in healthy subjects. Methods: Eighteen healthy subjects participated in this study. Isometric ankle evertor strength of the dominant leg was determined in each subject in different ankle and toe positions (dorsiflexion (DF) with toe extension (TE), DF with toe flexion (TF), plantar flexion (PF) with TE, and PF with TF). A 2 by 2 repeated analysis of variance (ANOVA) was used to determine the difference in the evertor strength between the ankle positions (PF and DF) and toe positions (TE and TF). Results: The results indicate that there was no significant ankle position by toe position interaction effect (p=.83). However, the ankle evertor strength was significantly increased in the ankle DF position than in the PF position (p<.01), and the ankle evertor strength during eversion with TE was significantly higher than eversion with TF (p<.01). Conclusion: The findings of this study suggest that clinicians should consider the ankle and toe positions when measuring the muscle strength and during performance of selective muscle strengthening exercises of the ankle evertor muscles.

Kinetic Analysis of Foot Balance and Gait Patterns in Patients with Adult Spinal Disease (성인 척추질환자의 발균형 및 보행형태에 대한 운동역학적 분석)

  • Park, Jae Soung;Lee, Joong Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.1
    • /
    • pp.23-32
    • /
    • 2019
  • Objective: The aim of this study was to provide kinematic data on the characteristics of spinal disease patients by comparing and analyzing kinematic variables related to foot balance and gait pattern of spinal disease. Method: The subjects of the study included 40 adult men and 60 adult women who visited the hospital in Busan. Patients who were diagnosed with spinal disease by a physician through X-ray examination were selected as subjects for the diagnosis of vertebral disc herniation, spinal stenosis, spinal disease diagnosed with spinal disease and the general public. Left and right foot pressure and contact area were checked by Gaitview pro meter. X-ray photographs were taken with a Zen-2090 mobile fluoroscopy under physicians' direct participation. One-way ANOVA was performed to compare the differences between the kinematic variables and post-hoc was performed by the Duncan method. Results: The difference in contact area between the left foot and the right foot was $115.30{\pm}14.15cm^2$ in the left side and $124.25{\pm}13.65cm^2$ in the left side in the spinal disease patients. The difference in pressure between the left and right side of the spinal disease patients was wider than that of the general people. Especially, the right side of the spinal disease patients showed a larger area of left foot contact than the general population. Conclusion: Spinal disease patients have wider contact area of the left foot than those of the general population. In the case of right spinal disease, the left foot support area is widened due to pain. In the gait, women showed slightly more posterior body center than men, and the upper body muscle imbalance and immobilization due to the spinal disease caused imbalance of the muscles moving to the lower limb, It was analyzed to inhibit movement.

Does Strategy of Downward Stepping Stair Due to Load of Additional Weight Affect Lower Limb's Kinetic Mechanism?

  • Ryew, Checheong;Yoo, Taeseok;Hyun, Seunghyun
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.26-33
    • /
    • 2020
  • This study measured the downward stepping movement relative to weight change (no load, and 10%, 20%, 30% of body weight respectively of adult male (n=10) from standardized stair (rise of 0.3 m, tread of 0.29 m, width of 1 m). The 3-dimensional cinematography and ground reaction force were also utilized for analysis of leg stiffness: Peak vertical force, change in stance phase leg length, Torque of whole body, kinematic variables. The strategy heightened the leg stiffness and standardized vertical ground reaction force relative to the added weights (p<.01). Torque showed rather larger rotational force in case of no load, but less in 10% of body weight (p<.05). Similarly angle of hip joint showed most extended in no-load, but most flexed in 10% of body weight (p<.05). Inclined angle of body trunk showed largest range in posterior direction in no-load, but in vertical line nearly relative to added weights (p<.001). Thus the result of the study proved that downward stepping strategy altered from height of 30 cm, regardless of added weight, did not affect velocity and length of lower leg. But added weight contributed to more vertical impulse force and increase of rigidity of whole body than forward rotational torque under condition of altered stepping strategy. In future study, the experimental on effect of weight change and alteration of downward stepping strategy using ankle joint may provide helpful information for development of enhanced program of prevention and rehabilitation on motor performance and injury.

Study on Dimensionality Reduction for Sea-level Variations by Using Altimetry Data around the East Asia Coasts

  • Hwang, Do-Hyun;Bak, Suho;Jeong, Min-Ji;Kim, Na-Kyeong;Park, Mi-So;Kim, Bo-Ram;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.85-95
    • /
    • 2021
  • Recently, as data mining and artificial neural network techniques are developed, analyzing large amounts of data is proposed to reduce the dimension of the data. In general, empirical orthogonal function (EOF) used to reduce the dimension in the ocean data and recently, Self-organizing maps (SOM) algorithm have been investigated to apply to the ocean field. In this study, both algorithms used the monthly Sea level anomaly (SLA) data from 1993 to 2018 around the East Asia Coasts. There was dominated by the influence of the Kuroshio Extension and eddy kinetic energy. It was able to find the maximum amount of variance of EOF modes. SOM algorithm summarized the characteristic of spatial distributions and periods in EOF mode 1 and 2. It was useful to find the change of SLA variable through the movement of nodes. Node 1 and 5 appeared in the early 2000s and the early 2010s when the sea level was high. On the other hand, node 2 and 6 appeared in the late 1990s and the late 2000s, when the sea level was relatively low. Therefore, it is considered that the application of the SOM algorithm around the East Asia Coasts is well distinguished. In addition, SOM results processed by SLA data, it is able to apply the other climate data to explain more clearly SLA variation mechanisms.

Immediate Effects of Roller Massage for Posterior Neck Muscles on the Muscle Strength and Range of Motion for Cranio-Cervical Flexion in Subjects With Forward Head Posture

  • Kang, Seung-tak;Jung, Jang-hun;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.28 no.2
    • /
    • pp.138-145
    • /
    • 2021
  • Background: Forward head posture (FHP) causes various posture imbalances associated with the head and neck. Myofascial release is an effective treatment method used for relaxing muscles and reducing muscle hyperactivity, but no studies have been conducted on suboccipital and neck muscles related to FHP. Objects: The purpose of this study was to investigate the immediate effect of roller massages on the cranio-cervical flexion (CCF) range of motion (ROM) and CCF strength applied to suboccipital and neck muscles in subject with forward head posture. Methods: Twenty-four FHP subjects (male: 13, female: 11) were recruited for this study. All subjects were recruited with a craniovertebral angle (CVA) of 53 degrees or less and a head tilt angle (HTA) of 20.66 degrees or higher. CCF strength was measured using Pressure biofeedback unit (PBU) in the supine posture and CCF ROM was measured using smartphone-based inclinometer. Roller massage (RM) was applied to suboccipital and neck muscles for 2 minutes and CCF ROM and strength were remeasured. Results: These results of this study showed that CCF ROM was a significant difference in CCF ROM before and after RM (p < 0.05). CCF strength also showed a significant difference before and after RM (p < 0.05). Conclusion: RM method might be recommended to increase the immediate ROM and strength of CCF in subjects with forward head posture.

Relationship Between Lower-limb Strength and Y-balance Test in Elderly Women

  • Eun-hye Kim;Sung-hoon Jung;Hwa-ik Yoo;Yun-jeong Baek;Oh-yun Kwon
    • Physical Therapy Korea
    • /
    • v.30 no.3
    • /
    • pp.194-201
    • /
    • 2023
  • Background: Falls are a common and serious problem in the elderly population. Muscle strength and balance are important factors in the prevention of falls. The Y-balance test (YBT) is used to assess dynamic postural control and shows excellent test-retest reliability. However, no studies have examined the relationship between lower-limb strength and YBT scores in elderly women. Objects: This study aimed to examine the relationship between lower-limb strength and YBT scores in elderly women. Methods: Thirty community-dwelling elderly women participated in the study. Lower-limb strength including hip flexor, hip extensor, hip abductor (HAB), hip adductor (HAD), knee flexor, knee extensor, ankle dorsiflexor, and ankle plantar flexor (PF) muscles was examined using a smart KEMA strength sensor (KOREATECH Inc.), and the YBT was used to assess dynamic balance. Relationship between lower-limb strength and YBT was demonstrated using a Pearson's correlation coefficient. Results: HAB strength (r = 0.388, p < 0.05), HAD strength (r = 0.362, p < 0.05), and ankle PF strength (r = 0.391, p < 0.05) positively correlated with the YBT-anterior direction distance. Ankle PF strength was positively correlated with the YBT-posteromedial direction distance (r = 0.396, p < 0.05) and composite score (r = 0.376, p < 0.05). Conclusion: The results of this study suggest that HAB, HAD, and ankle PF strengths should be considered for dynamic postural control in elderly women.

Study on Fish-friendly Flow Characteristic in Stepped Fishway (계단식 어도에서의 어류 친화적 흐름 특성 연구)

  • Chanjin Jeong;Dong Hyun Kim;Hyung Suk Kim;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.2
    • /
    • pp.65-73
    • /
    • 2023
  • Fishways are essential structures that must be installed in rivers to facilitate the movement of fish between upstream and downstream areas. However, the efficiency of fish passage varies depending on the flow conditions within the fishway. Therefore, this study examined the fish-friendly flow characteristics within a stepped fishway at different overflow depths using FLOW-3D, and conducted experiments for model validation. The key parameters affecting fish swimming ability include velocity, turbulent kinetic energy, and energy dissipation rate. These factors were assessed using a simulated fish species, the zacco platypus, to evaluate the suitability of fish-friendly flow condition. It was confirmed that overflow depth significantly influences fish behavior, and an appropriate overflow depth is required for stepped fishway design. The results of this study are expected to serve as fundamental data for the design of stepped fishways in the future.