• Title/Summary/Keyword: Kinetic frictional force

Search Result 13, Processing Time 0.017 seconds

Development of ultrasonic linear piezoelectric actuator with flexuralvibration mode (굴곡 진동모드를 이용한 초음파 선형 압전 액추에이터 개발)

  • Yoon, Jang-Ho;Choi, Woo-Chun;Kang, Chong-Yun;Kang, Jin-Kyu;Yoon, Seok-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.461-466
    • /
    • 2009
  • This paper represents a piezoelectric ultrasonic linear actuator with flexural vibration mode. The actuator is composed of two piezo ceramics, the elastic body, and the connecting tip. It is driven by the frictional force between the connecting tip and the linear motion guide. Unimorph actuators have flexural vibration. Its middle point is fixed so that suitable to the flexural vibration of $3/2\lambda$. These vibrations contribute to elliptical motion by mixed mode between longitudinal and transverse mode. It was generated when the ultrasonic electrical signals with 90 degree phase difference are applied to two ceramics. A linear movement can be easily obtained using the elliptical motion. The ATILA, FEM simulator has been used to design actuator and verify the kinetic and dynamic analysis. We used the ceramics of $20\times10\times1$ mm size and confirmed the flexural vibration of the $3/2\lambda$ at the 79 kHz through the scanning of 3D-vibrometer. The maximum velocity of actuator was 221 mm/sec and the thrust force of actuator was 2.7 N in 200Vp-p of additional voltage.

Evaluation of friction of ceramic brackets in various bracket-wire combinations (브라켓 각도 변화에 따른 세라믹 브라켓의 마찰력 측정)

  • Cha, Jung-Yul;Kim, Kyung-Suk;Kim, Dong-Choon;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.36 no.2 s.115
    • /
    • pp.125-135
    • /
    • 2006
  • The purpose of this study was to measure and compare the level of frictional resistance generated from three currently used ceramic brackets; 1, Crystaline $V^{(R)}$, Tomy International Inc., Tokyo, Japan; 2, $Clarity^{(R)}$, 3M Unitek, Monrovia, CA, USA; 3, $Inspire^{(R)}$, Ormco, Orange, CA, USA; with composite resin brackets, Spirit, Ormco, Orange, CA, USA; and conventional stainless steel brackets, Kosaka, Tomy International Inc., Tokyo, Japan used as controls. In this experiment, the resistance to sliding was studied as a function of four angulations $(0^{\circ},\;5^{\circ},\;10^{\circ}\;and\;15^{\circ})$ using 2 different orthodontic wire alloys: stainless steel (stainless steel, SDS Ormco, Orange, CA, USA), and beta-titanium (TMA, SDS Ormco, Orange, CA, USA). After mounting the 22 mil brackets to the fixture and $.019{\times}.025$ wires ligated with elastic ligatures, the arch wires were slid through the brackets at 5mm/min in the dry state at $34^{\circ}C$. Silica-insert ceramic brackets generated a significantly lower frictional force than did other ceramic brackets, similar to that of stainless steel brackets. Beta-titanium archwires had higher frictional resistance than did stainless steel, and all the brackets showed higher static and kinetic frictional force as the angulation increased. When the angulation exceeded $5^{\circ}$, the active configuration emerged and frictional force quickly increased by 2.5 to 4.5-fold. The order of frictional force of the different wire-bracket couples transposed as the angle increased. The silica-insert ceramic bracket is a valuable alternative to conventional stainless steel brackets for patients with esthetic demands.

A Study on Safety Estimation of Railroad Wheel (컨테이너 철도차륜의 안전성 평가에 관한 연구)

  • Lee, Dong-Woo;Kim, Jin-Nam;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1178-1185
    • /
    • 2010
  • Recently, high speed of container freight cars is causing fatigue damage of wheel. Sudden failure accidents cause a lot of physical and human damages. Therefore, damage analysis for wheel prevents failure accident of container freight car. Wheel receives mechanical and thermal loads at the same time while rolling stocks are run. The mechanical loads applied to wheel are classified by the horizontal load from contact of wheel and rail in curve line section and by the vertical force from rolling stocks weight. Also, braking and deceleration of rolling stocks cause repeated thermal load by wheel tread braking. Specially, braking of rolling stocks is frictional braking method that brake shoe is contacted in wheel tread by high breaking pressure. Frictional heat energy occurs on the contact surface between wheel tread and brake shoe. This braking converts kinetic energy of rolling stocks into heat energy by friction. This raises temperature rapidly and generates thermal loads in wheel and brake shoe. There mechanical and thermal loads generate crack and residual stress in wheel. Wetenkamp estimated temperature distribution of brake shoe experimentally. Donzella proposed fatigue life using thermal stress and residual stress. However, the load applied to wheel in aforementioned most researches considered thermal load and mechanical vertical load. Exact horizontal load is not considered as the load applied to wheel. Therefore, above-mentioned loading methods could not be applied to estimate actual stress applied to wheel. Therefore, this study proposed safety estimation on wheel of freight car using heat-structural coupled analysis on the basis of loading condition and stress intensity factor.