• Title/Summary/Keyword: Kinetic Property

Search Result 85, Processing Time 0.027 seconds

Strategic design for oxide-based anode materials and the dependence of their electrochemical properties on morphology and architecture

  • Gang, Yong-Muk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.73-73
    • /
    • 2012
  • Modern technology-driven society largely relies on hybrid electric vehicles or electric vehicles for eco-friendly transportation and the use of high technology devices. Lithium rechargeable batteries are the most promising power sources because of its high energy density but still have a challenge. Graphite is the most widely used anode material in the field of lithium rechargeable batteries due to its many advantages such as good cyclic performances, and high charge/discharge efficiency in the initial cycle. However, it has an important safety issue associated with the dendritic lithium growth on the anode surface at high charging current because the conventional graphite approaches almost 0 V vs $Li/Li^+$ at the end of lithium insertion. Therefore, a fundamental solution is to use an electrochemical redox couple with higher equilibrium potentials, which suppresses lithium metal formation on the anode surface. Among the candidates, $Li_4Ti_5O_{12}$ is a very interesting intercalation compound with safe operation, high rate capability, no volume change, and excellent cycleability. But the insulating character of $Li_4Ti_5O_{12}$ has raised concerns about its electrochemical performance. The initial insulating character associated with Ti4+ in $Li_4Ti_5O_{12}$ limits the electronic transfer between particles and to the external circuit, thereby worsening its high rate performance. In order to overcome these weak points, several alternative synthetic methods are highly required. Hence, in this presentation, novel ways using a synergetic strategy based on 1D architecture and surface coating will be introduced to enhance the kinetic property of Ti-based electrode. In addition, first-principle calculation will prove its significance to design Ti-based electrode for the most optimized electrochemical performance.

  • PDF

A Study on the Thermal Adsorption and Desorption Characteristics of Industrial Odorants using Activated Carbon (활성탄을 이용한 산업체 악취물질의 열적 흡탈착 연구)

  • Kim, Joo Yeon;Rhee, Young Woo;Han, Mun Hee
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.551-555
    • /
    • 2012
  • Desorption reaction characteristics of the commercial activated carbons which were used for the removal of industrial odorants were investigated. BET specific surface area was analyzed to investigate the chemicophysical property of activated carbon. Adsorptivity of activated carbon was estimated by iodine number. Thermogravimetric analyzer (TGA) was used to investigate the desorption characteristics. Activation energies and reaction orders for reaction characteristics according to adsorption and desorption of activated carbons were estimated by employing the Friedman method and Freeman-Carroll method. Adsorptivity of reprocessed activated carbons were significantly lower than that of fresh activated carbons. In this study, it was found that the activation energies were 15.9~23.4 kJ/mol in Friedman method and 22.7~33.8 kJ/mol in Freeman-Carroll method.

The Nucleophilic Substitution Reactions of the Nitrate Group. The Kinetics of Substituted Benzyl Nitrates with Anilines in Acetonitrile (질산기의 친핵성 치환반응. 아세토니트릴용매에서 질산치환벤질류와 아닐린류와의 반응속도론)

  • Wang Ki Kim;Chang Kook Sohn
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.31-36
    • /
    • 1989
  • The second-order rate constants for the nucleophilic substitution reactions of para-substituted benzyl nitrates with para-substituted anilines in acetonitrile were conductometrically determined. Hammett ${\rho}$x and ${\rho}$y values and Bronsted ${\beta}$ values were obtained from these kinetic data. The reactions of Benzyl nitrates with the series of anilines showed linear Hammett plots with negative slopes. For the change of substituents in the benzyl nitrates, nonlinear Hammett plots with a concave upwards curve were obtained. We applied the potential energy surface and the quantum mechanical models in order to examine the transition state variations caused by changes in substituents on the nucleophile and the substrate. The results showed that the reaction was proceeded via the $S_{N}2$-type reaction mechanism in which the extent of bond-formation was greatly changed depending on the property of the substituents in substrate.

  • PDF

Effect of Processing Parameters on the Densification-Behaviors by Low Shrinkage in Clay Materials (점토질소지의 공정제어에 따른 저수축 치밀화효과)

  • 임희진;최성철;이응상;이진성
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.725-734
    • /
    • 1996
  • Shrinkage behaviors associated with forming drying and firing processes could be a driving force for the densification in materials. Low shrinkage-densification behaviors in clay materials have been shown to be highly dependent upon the processing parameters including particle size effect and kinetic behaviors caused by phases transformation characteristics. Chamottes pre-treated at 90$0^{\circ}C$ and 120$0^{\circ}C$ had dominent influence upon shrinkage control of materials during heat-treatment. But Coarse chamotte particles heat-treated at 120$0^{\circ}C$ did not contri-bute to any densification behaviors in clay materials while these added coarse particles could enhance near-net-shape control. Microstructure / property relationships in clay materials have been thought to be directly influenced by optimized characteristics between low shrinkage and densification behaviors.

  • PDF

Adsorption Characteristics of Radioactive Cs Ion by Zeolite X (제올라이트 NaX에 의한 방사성 물질인 Cs 이온의 흡착 특성)

  • Lee, Chang-Han;Lee, Min-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.2
    • /
    • pp.66-73
    • /
    • 2017
  • This study was to evaluate the influential parameters such as intial Cs concentration, reaction temperature, contact time and pH variation of solution on Cs adsorption. Using the experimental data, adsorption kinetics, isotherms and thermodynamic properties were analyzed. The Cs ion adsorption of the zeolite X was effective in the range from pH 5 to 10 and reached equilibrium after 60 minutes. The adsorption kinetics and isotherms of Cs ion with the zeolite X was described well by the pseudo-second-order kinetic and Langmuir isotherm model. The maximum adsorption capacities of Cs ion calculated from Langmuir isotherm model at 293~333 K were from 303.03 mg/g to 333.33 mg/g. It was found that thermodynamic property of Cs ion absorption on the zeolite X was spontaneous and endothermic reaction. The experimental data were fitted a second-order polynomial equation by the multiple regression analysis. The values of the dependent variable calculated by this best fitted model equation were in very good agreement with the experimentally obtained values.

Study on flow characteristics in LBE-cooled main coolant pump under positive rotating condition

  • Lu, Yonggang;Wang, Zhengwei;Zhu, Rongsheng;Wang, Xiuli;Long, Yun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2720-2727
    • /
    • 2022
  • The Generation IV Lead-cooled fast reactor (LFR) take the liquid lead or lead-bismuth eutectic alloy (LBE) as the coolant of the primary cooling circuit. Combined with the natural characteristics of lead alloy and the design features of LFR, the system is the simplest and the number of equipment is the least, which reflects the inherent safety characteristics of LFR. The nuclear main coolant pump (MCP) is the only power component and the only rotating component in the primary circuit of the reactor, so the various operating characteristics of the MCP are directly related to the safety of the nuclear reactor. In this paper, various working conditions that may occur in the normal rotation (positive rotating) of the MCP and the corresponding internal flow characteristics are analyzed and studied, including the normal pump condition, the positive-flow braking condition and the negative-flow braking condition. Since the corrosiveness of LBE is proportional to the fluid velocity, the distribution of flow velocity in the pump channel will be the focus of this study. It is found that under the normal pump condition and positive-flow braking conditions, the high velocity region of the impeller domain appears at the inlet and outlet of the blade. At the same radius, the pressure surface is lower than the back surface, and with the increase of flow rate, the flow separation phenomenon is obvious, and the turbulent kinetic energy distribution in impeller and diffuser domain shows obvious near-wall property. Under the negative-flow braking condition, there is obvious flow separation in the impeller channel.

Energy Harvesting System according to Moisture Absorption of Textile and Efficient Coating Method as a Carbon Black (섬유 고분자의 수분 흡수에 따른 에너지 하베스팅 발전 소자 및 이를 위한 카본 블랙의 효율적인 코팅법)

  • Choi, Seungjin;Chae, Juwon;Lee, Sangoh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.280-287
    • /
    • 2021
  • Generating electricity by using water in many energy harvesting system is due to their simplicity, sustainability and eco-friendliness. Evaporation-driven moist-electric generators (EMEGs) are an emergent technology and show great potential for harvesting clean energy. In this study, we report a transpiration driven electro kinetic power generator (TEPG) that utilize capillary flow of water in an asymmetrically wetted cotton fabric coated with carbon black. When water droplets encounter this textile EMEG, the water flows spontaneously under capillary action without requiring an external power supply. First carbon black sonicated and dispersed well in three different solvent system such as dimethylformamide (DMF), sodiumdedecylbenzenesulfonate (SDBS-anionic surfactant) and cetyltrimethylammoniumbromide (CTAB-cationic surfactant). A knitted cotton/PET fabric was coated with carbon black by conventional pad method. Cotton/PET fabrics were immersed and stuttered well in these three different systems and then transferred to an autoclave at 120 ℃ for 15 minutes. Cotton/PET fabric treated with carbon black dispersed in DMF solvent generated maximum current up to 5 µA on a small piece of sample (2 µL/min of water can induce constant electric output for more than 286 hours). This study is high value for designing of electric generator to harvest clean energy constantly.

LOW REGULARITY SOLUTIONS TO HIGHER-ORDER HARTREE-FOCK EQUATIONS WITH UNIFORM BOUNDS

  • Changhun Yang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.27-40
    • /
    • 2024
  • In this paper, we consider the higher-order HartreeFock equations. The higher-order linear Schrödinger equation was introduced in [5] as the formal finite Taylor expansion of the pseudorelativistic linear Schrödinger equation. In [13], the authors established global-in-time Strichartz estimates for the linear higher-order equations which hold uniformly in the speed of light c ≥ 1 and as their applications they proved the convergence of higher-order Hartree-Fock equations to the corresponding pseudo-relativistic equation on arbitrary time interval as c goes to infinity when the Taylor expansion order is odd. To achieve this, they not only showed the existence of solutions in L2 space but also proved that the solutions stay bounded uniformly in c. We address the remaining question on the convergence of higherorder Hartree-Fock equations when the Taylor expansion order is even. The distinguished feature from the odd case is that the group velocity of phase function would be vanishing when the size of frequency is comparable to c. Owing to this property, the kinetic energy of solutions is not coercive and only weaker Strichartz estimates compared to the odd case were obtained in [13]. Thus, we only manage to establish the existence of local solutions in Hs space for s > $\frac{1}{3}$ on a finite time interval [-T, T], however, the time interval does not depend on c and the solutions are bounded uniformly in c. In addition, we provide the convergence result of higher-order Hartree-Fock equations to the pseudo-relativistic equation with the same convergence rate as the odd case, which holds on [-T, T].

The Development of Iodine-123 with MC-50 Cyclotron (MC-50 싸이클로트론을 이용한 $^{123}I$ 제법 연구)

  • Suh, Yong-Sup;Yang, Seung-Tae;Chun, Kown-Soo;Lee, Jong-Doo;Han, Hyon-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.25 no.2
    • /
    • pp.286-293
    • /
    • 1991
  • $^{123}I$, which is applied for the thyroid and other in vivo kinetic study, has a special role in life sciences. The 159 KeV $\gamma-ray$ from $^{123}I$ is almost ideally appropriate for the current imaging instrumentation. Its decay mode (electron capture) and short half-life (13.3 hr) reduced the burden of radiation dose to the patients, and its chemical property makes it easy to synthesize the labelling compounds. In this experiment, the production of $^{123}I$ via the nuclear reaction $^{124}Te(p,2n)^{123}I$ with 28 MeV protons was sutdied. $TeO_2$ is used as a target material, because it has good physical properties. The target was prepared with $TeO_2$ powder and was molten into a ellipsoidal cavity (a=14 mm, b=10 mm, $270.8mg/cm^2$ thick) of pure platinum. The irradiation was carried out in the external proton beam with incident energies range from 28 MeV to 22 MeV, and current was $30{\mu}A$. The loss of $TeO_2$ target was significantly reduced by using $4\pi-cooling$ system in irradiation. The dry distillation method was adopted for the separation of $^{123}I$ from irradiated target, and when it was kept 5 minutes at $780^{\circ}C$, its result was quantitative. The loss of the target material $(TeO_2)$ was below 0.2% for each production run and $^{123}I$ from the dry distillation apparatus was captured with 0.01 N NaOH in $Na^{123}I$ form, then the pH of the solution was adjusted to $7.5\sim9.0$ with HC1/NaOH. The $Na^{123}I$ solution was passed through $0.2{\mu}m$ membrane filter, and sterilized under high pressure and temperature for 30 minutes. The production of $^{123}I$ is acceptable for clinical application based on the quality of USP XXI.

  • PDF

Effect of Temperature, pH and Sugars on Kinetic Property of Maillard reaction (당의 종류, pH 및 온도가 마이야르 반응속도에 미치는 영향)

  • Chun, Young-Hye;Kim, Chong-Kun;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.55-60
    • /
    • 1986
  • The effects of temperature (70-$100^{\circ}C$), pH (3-8) and various sugars were investigated on the reaction rate, activation energy and z-value of Maillard reaction of 0.8m sugar and 0.8m glycine mixture. The sugars compared were glucose, fructose, lactose and sucrose, and the reaction was evaluated by absorbances at 278nm for pyrazine compounds and at 400nm for brown pigments. Fructose-glycine mixture showed a faster initial reaction rate than that of glucose-glycine, which was reversed by the order of glucose > fructose > lactose > sucrose after 10 hrs of reaction at pH 5.8 and $100^{\circ}C$. Generally, higher activation energy was required for forming pyrazines than that of brown pigment development. The highest z-value was obtained for lactose-glycine mixture, followed by glucose or fructose-glycine which had almost same z-value. The reaction rate was little affected by the pH change in the range of 4-6, while pH < 3 and pH 6-8 caused a significant increase in the rates.

  • PDF