• Title/Summary/Keyword: Kinetic Method

Search Result 1,066, Processing Time 0.039 seconds

Synthesis of Carbobenzoxy-alanyl-thiaarginine (thialysine) benzyl ester and kinetic Studies with Trypsin

  • 홍남주;장성훈;진동훈
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.689-695
    • /
    • 1998
  • Carbobenzoxy-alanyl-thiaarginine benzyl ester and carbobenzoxy-alanyl-thialysine benzyl ester were synthesized in solution. Kinetic studies were carried out using three different analytical methods, semi-classical method, progress curve analysis and competitive spectrophotometry. In competitive spectrophotometry, carbobenzoxy-valyl-glycyl-arginyl-p-nitroaniline was used as a detector. Kinetic constants such as $K_m$ and $V_{max}$ measured by competitive spectrophotometry are almost the same as those values measured by semi-classical method. Colorimetric Ellman's assays showed the thio-peptido mimetics to be a suitable substrates for trypsin. Kinetic studies with trypsin gave $K_m$ of 2.33 mM and $k_{cat}$ of $1.50{\times}10^5\;min^{-1}$ for carboxy-alanyl-thiaarginine benzyl ester and $K_m$ of $3.41{\times}10^{-3}\; Mm\; and\; k_{cat}\; of\; 520{\times}102\; min^{-1}$ for carbobenzoxy-alanyl-thialysine benzyl ester, respectively. Kinetic constants $(K_m=2.04{\times}10^{-2}\; mM, K_{cat}=4.42{\times}10^3 \;min^{-1})$ for natural substrate, carbobenzoxy-alanyl-lysine benzyl ester, were also evaluated by competitive spectrophotometry in order to compare the mode of binding on trypsin.

Determination of Kinetic Parameters for Texture Changes of Sweet Potatoes during Heating (고구마 조직의 가열변화에 대한 반응속도론적 상수 결정)

  • Lee, Jung-Ju;Rhim, Jong-Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.66-71
    • /
    • 2001
  • Kinetic parameters for the texture degradation of three varieties of sweet potato during heating were determined using two alternative methods, the biphasic model and the fractional conversion method. The texture degradation of sweet potatoes during heating could be expressed by two simultaneous first order reactions using the biphasic method, whose activation energies were ranged $71.0{\sim}75.1\;kJ/mol\;and\;48.4{\sim}59.6\;kJ/mol$ for the initial fast texture degradation reaction and the slow texture degradation reaction at a prolonged heating period, respectively. However, the whole texture degradation phenomena of sweet potatoes during heating could also be explained by a single first order reaction using the fractional conversion method. The activation energies were $67.5{\sim}75.3\;kJ/mol$, which were comparable with those of the first phase reaction for the texture degradation determined by the biphasic model. A kinetic compensation effect shown between the kinetic parameters determined by both methods indicates that both methods can be conveniently used to determine kinetic parameters for the texture degradation of sweet potatoes by heating.

  • PDF

A Prototyping Method for Kinect Facade Design: Focusing on the Role of BIM and the Interaction between Digital and Analog Models (프로토타이핑 기법에 의한 키네틱 외피의 설계: 디지털-아날로그 모델의 상호작용과 BIM의 역할을 중심으로)

  • Kim, Do-Young;Kim, Sung-Ah
    • Journal of KIBIM
    • /
    • v.5 no.1
    • /
    • pp.16-24
    • /
    • 2015
  • The kinetic façade system is an interactive building envelope which is adaptive to environmental condition by transforming the behaviour of its components. The design process of kinetic façade system calls for a novel approach. It needs to support designers to adopt technologies from multidisciplinary fields such as physical computing and robotics. In this paper, prototyping method is introduced as a useful technique for implementing kinetic façade systems. In order to incorporate prototyping method into architectural design process, two aspects are investigated in digital design studio: (1) The interactions between digital and analogue environments (2) The role of traditional design tools. Furthermore, the role of BIM is investigated by analyzing two aspects.

Kinetics analysis of energetic material using isothermal DSC (등온 DSC를 이용한 고에너지 물질의 정밀 반응 모델 기법 개발)

  • Kim, Yoocheon;Park, Jungsu;Kwon, Kuktae;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.219-222
    • /
    • 2015
  • The kinetic analysis of energetic materials using Differential Scanning Calorimetry (DSC) is proposed. Friedman Isoconversional method is applied to DSC experiment data and AKTS software is used for analysis. The frequency factor and activation energy are extracted as a function of product mass fraction. The extracted kinetic scheme does not assume multiple chemical steps to describe the response of energetic materials; instead, multiple set of Arrhenius factors are used in describing a single global step. The proposed kinetic scheme has considerable advantage over the standard method based on One-Dimenaionl Time to Explosion (ODTX). Reaction rate and product mass fraction simulation are conducted to validate extracted kinetic scheme. Also a slow cook-off simulation is implemented for validating the applicability of the extracted kinetics scheme to a practical thermal experiment.

  • PDF

A Comparative Evaluation of Closed and Open Kinetic Exercises in the Management of Chronic Ankle Instability

  • Jung, Namjin
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.4
    • /
    • pp.2212-2220
    • /
    • 2020
  • Background: Repetitive damage to the ankle joint causes chronic ankle instability, and studies comparing the effects of exercise in open and closed chains as a treatment method are very rare. Objectives: To investigate the effects of open and closed kinetic exercises on muscle activity and dynamic balance of ankle joint in adults with chronic ankle instability. Design: Single-blind randomized controlled trial. Methods: The selected 30 subjects are randomly divided into open kinetic chain exercise experimental group (EGI, n=10), closed kinetic chain exercise experimental group (EGII, n=10), and stretching control group (CG, n=10). Open and closed kinetic exercises lasted 30 minutes three times a week for six weeks and stretching exercises performed four actions for 20 seconds and five sets. The measurement tools using surface electromyography to measure muscle activity in the ankle joint. The dynamic balance of the ankle was evaluated using the Y-Balance test. Results: Following the intervention, closed and open kinetic chain exercise group showed significant difference in tibialis anterior and gastrocnemius muscle activity and dynamic balance (P<.05). However, no significant difference in tibialis anterior and gastrocnemius muscle activity and dynamic balance between closed and open kinetic chain exercise group (P<.05). Conclusion: This study provides evidence that closed and open kinetic chain exercise can be presented as an effective exercise for the muscle activity of ankle muscle and dynamic balance of the subject with chronic ankle instability.

Implementation and the Energy Efficiency of the Kinetic Shading System (가동형 차양 시스템의 구성과 에너지 효율)

  • Han, Seung-Hoon
    • KIEAE Journal
    • /
    • v.14 no.5
    • /
    • pp.67-73
    • /
    • 2014
  • This study aims at examining kinetic efficient shading systems and their implementation methods. These days, the importance of the shading devices are getting more significant due to the energy problem. Cordially, suitable shade designs are required as an important element for the exterior envelope of the building. This study employs the optimal shading design as an efficient shading method with the kinetic system that can be converted actively by the altitude of the sun. The proposed kinetic shading system works not only as a lightshelf in case the altitude of the sun is high but also as a vertical louver when the sun is getting lower in order to block the direct sunlight. This study has analyzed the thermal performance and shading coefficient of the kinetic shading system in comparison to existing fixed shading devices using the Ecotect. The results, in sum, conclude that the suggested kinetic shading system could decrease direct sunlights 26.2% more than the existing shading methods.

The Investigation of a Novel Indicator System for Trace Determination and Speciation of Selenium in Natural Water Samples by Kinetic Spectrophotometric Detection

  • Gurkan, Ramazan;Ulusoy, Halil Ibrahim
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1907-1914
    • /
    • 2010
  • A novel catalytic kinetic method is proposed for the determination of Se(IV), Se(VI) and total inorganic selenium in water based on the catalytic effect of Se(IV) on the reduction of bromate by p-nitrophenylhydrazine at pH 3.0. The generated bromine, $Br_2$ or $Cl_2$ plus $Br_2$ in 0.1 M NaCl (or NaBr) environment efficiently decolorized Calmagite and the reaction was monitored spectrophotometrically at 523 nm as a function of time. In this indicator reaction, bromide acted as an activator for the catalysis of selenium (IV) and a reducing agent for selenium (VI) at pH 3.0, which allowed the determination of total selenium. The fixed time method was adopted for the determination and speciation of inorganic selenium. Under the optimum conditions, the calibration graph are linear in the range 1 - 35 ${\mu}gL^{-1}$ of Se(IV) for the fixed time method at $25^{\circ}C$. The detection limit based on statistical $3S_{blank}$/m-criterion was 0.215 ${\mu}gL^{-1}$ for the fixed time method (7 min). All of the variables that affect the sensitivity at 523 nm were investigated, and the optimum conditions were established. The interference effect of various cations and anions on the Se (IV) determination was also studied. The selectivity of the selenium determination was greatly improved with the use of the strongly cation exchange resin such as Amberlite IR120 plus. The proposed kinetic method was validated statistically and through recovery studies in natural water samples. The RSDs for ten replicate measurements of 5, 15 and 25 ${\mu}gL^{-1}$ of Se(IV) and Se(VI) was changed between 2.1 - 4.85%. Analyses of a certified standard reference material (NIST SRM 1643e) for selenium using the fixed-time method showed that the proposed kinetic method has good accuracy. Se(IV), Se(VI) and total inorganic selenium in environmental water samples have been successfully determined by this method after selective reduction of Se(VI) to Se(IV).

Effects of Impact Velocity on Crystallization and Activation Energy of Cu-based Bulk Metallic Glasses in Kinetic Spray Coating (저온 분사 코팅 공정에서 충돌속도에 따른 CuNiTiZr 벌크 비정질 소재의 활성화 에너지와 결정화 거동 분석)

  • Yoon, Sang-Hoon;Bae, Gyu-Yeol;Kim, Jung-Hwan;Lee, Chang-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.301-307
    • /
    • 2008
  • In this paper, nanocrystallization of CuNiTiZr bulk metallic glass (BMG) subjecting to a kinetic spraying, dependent on impact velocity, was investigated by numerical and experimental approaches. The crystallization fraction and nucleation activation energy of initial feedstock and as-deposited coating were estimated by DSC and Kissinger method, respectively. The results of numerical modeling and experiment showed that the crystalline fraction and nucleation activation energy in BMG coatings were depended on kinetic energy of incident particle. Upon impact, the conversion of particle kinetic energy leads to not only decreasing free energy barrier but also increasing the driving force for an amorphous to crystalline phase transformation. The nanocrystallization of BMGs is associated with the strain energy delivered by a plastic deformation with a high strain rate.

Application of Monte Carlo Simulation to Intercalation Electrochemistry II. Kinetic Approach to Lithium Intercalation into LiMn2O4 Electrode

  • Kim, Sung-Woo;Pyun, Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.2
    • /
    • pp.86-92
    • /
    • 2002
  • The present article is concerned with the application of the kinetic Monte Carlo simulation to electrochemistry of lithium intercalation from the kinetic view point. Basic concepts of the kinetic Monte Carlo method and the transition state theory were first introduced, and then the simulation procedures were explained to evaluate diffusion process. Finally the kinetic Monte Carlo method based upon the transition state theory was employed under the cell-impedance-controlled constraint to analyse the current transient and the linear sweep voltammogram for the $LiMn_2O_4$ electrode, one of the intercalation compounds. From the results, it was found that the kinetic Monte Carlo method is much relevant to investigate kinetics of the lithium intercalation in the field of electrochemistry.

CALORIMETRIC INVESTIGATION OF SULFUR VULCANIZATION OF NATURAL RUBBER

  • Paik, Nam-Chul;Choi, Sei-Young;Suh, Won-Dong
    • Elastomers and Composites
    • /
    • v.21 no.1
    • /
    • pp.13-19
    • /
    • 1986
  • The effects of several vulcanizing accelerators on the determination of kinetic parameters of natural rubber vulcanizate was studied by DSC. Kinetic parameters were determined by means of the calculation procedures of Borchardt-Daniels and Oscillating Disk Rheometer (ODR) cure curve analysis, using both DSC exothermal thermogram and ODR cure curve. In order to examine the credibility in the DSC method the same compound which was und for DSC method was used for the comparison with the results of ODR data. Upon this method, kinetic rate constant (k), and Arrehenius parameter (Ea, ko, n) have been determined for rubber compounds via a new method using DSC thermogram and ODR cure curve. In the comparison of DSC and ODR results, kinetic parameters has shown good agreements between two results. Consequently, from the present studies, it is shown that the DSC thermoanalytical method can provide an alternate new method of kinetic study of rubber vulcanization.

  • PDF