• Title/Summary/Keyword: Kinetic Design

Search Result 427, Processing Time 0.029 seconds

Design of Optimal Kinetic Energy Harvester Using Double Pendulum (이중진자를 이용한 최적의 운동에너지 하베스터 설계)

  • Lee, Chibum;Park, Hee Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.619-624
    • /
    • 2015
  • Owing to miniaturization and low-power electronics, mobile, implanted, and wearable devices have become the main trends of electronics during the past decade. There has been much research regarding energy harvesting to achieve battery-free or self-powered devices. The optimal design problems of a double-pendulum kinetic-energy harvester from human motion are studied in this paper. For the given form factor, the weight of the harvester, and the known human excitation, the optimal design problem is solved using a dynamic non-linear double-pendulum model and an electric generator. The average electrical power was selected as the performance index for the given time period. A double-pendulum harvester was proven to be more efficient than a single-pendulum harvester when the appropriate parameters were used.

The Impact of Side Reactions in Sulfur Recovery Unit Design (황 회수 공정 설계에서 부 반응의 영향)

  • Kim, Sung Ho;Jung, Won Seok;Lee, Hee Mun;Chang, Geun Soo
    • Plant Journal
    • /
    • v.13 no.3
    • /
    • pp.36-46
    • /
    • 2017
  • In the reaction furnace of modified Claus process, chemical equilibrium reactions and kinetic reactions occur simultaneously. The main kinetic components are hydrogen ($H_2$), carbon monoxide (CO), carbonyl sulphide (COS) and carbon disulphide ($CS_2$). The equilibrium calculations, empirical correlations and sulfur recovery technology providers' (licensors) data for kinetic components (COS and $CS_2$) in the reaction furnace were analyzed to evaluate the amount of kinetic components by applying them to five different projects in which GS Engineering & Construction participated. Kinetic components ($H_2$ and CO) are also calculated and the results are analyzed to evaluate the impact of temperature in the reaction furnace and the waste heat boiler. Total required $O_2$ deviations for combustion in the reaction furnace are additionally shown, with and without side reactions. A full understanding of side reactions in the modified Claus process can help to improve sulfur recovery efficiency and optimize equipment design.

  • PDF

Implementation and the Energy Efficiency of the Kinetic Shading System (가동형 차양 시스템의 구성과 에너지 효율)

  • Han, Seung-Hoon
    • KIEAE Journal
    • /
    • v.14 no.5
    • /
    • pp.67-73
    • /
    • 2014
  • This study aims at examining kinetic efficient shading systems and their implementation methods. These days, the importance of the shading devices are getting more significant due to the energy problem. Cordially, suitable shade designs are required as an important element for the exterior envelope of the building. This study employs the optimal shading design as an efficient shading method with the kinetic system that can be converted actively by the altitude of the sun. The proposed kinetic shading system works not only as a lightshelf in case the altitude of the sun is high but also as a vertical louver when the sun is getting lower in order to block the direct sunlight. This study has analyzed the thermal performance and shading coefficient of the kinetic shading system in comparison to existing fixed shading devices using the Ecotect. The results, in sum, conclude that the suggested kinetic shading system could decrease direct sunlights 26.2% more than the existing shading methods.

Kinetic Data for Texture Changes of Foods During Thermal Processing

  • Lee, Seung Hwan
    • Food Engineering Progress
    • /
    • v.21 no.4
    • /
    • pp.303-311
    • /
    • 2017
  • To automate cooking processes, quantitative descriptions are needed on how quality parameters, such as texture change during heating. Understanding mechanical property changes in foods during thermal treatment due to changes in chemical composition or physical structure is important in the context of engineering models and in precise control of quality in general. Texture degradation of food materials has been studied widely and softening kinetic parameters have been reported in many studies. For a better understanding of kinetic parameters, applied kinetic models were investigated, then rate constants at $100^{\circ}C$ and activation energy from previous kinetic studies were compared. The food materials are hardly classified into similar softening kinetics. The range of parameters is wide regardless of food types due to the complexity of food material, different testing methods, sample size, and geometry. Kinetic parameters are essential for optimal process design. For broad and reliable applications, kinetic parameters should be generated by a more consistent manner so that those of foods could be compared or grouped.

Design and Production of Kinetic Sculpture System using a BLDC Motor (BLDC 전동기를 이용한 Kinetic Sculpture 시스템의 설계 및 제작)

  • Kim, Yoo-Jin;Son, Young-Dae
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.97-98
    • /
    • 2015
  • 본 논문은 BLDC 전동기의 구동제어를 통해 Kinetic Sculpture라는 공학적인 조형물 설계 및 구현을 목표로 한다. 조형물 전시를 통해 사람들에게 시각적인 아름다움을 보여주고 효율적인 배치를 통해 상징성을 추가하여 부가적인 경제이익을 얻을 수 있다. 따라서, 본 논문에서는 11대의 BLDC 전동기의 연동제어를 위한 위치 및 속도제어 시스템을 구축하였고, ATmega128 마이크로컨트롤러를 이용한 상위제어기의 직렬통신 제어를 통해 Kinetic Sculpture의 구현가능성을 확인하였다.

  • PDF

A Comparative Evaluation of Closed and Open Kinetic Exercises in the Management of Chronic Ankle Instability

  • Jung, Namjin
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.4
    • /
    • pp.2212-2220
    • /
    • 2020
  • Background: Repetitive damage to the ankle joint causes chronic ankle instability, and studies comparing the effects of exercise in open and closed chains as a treatment method are very rare. Objectives: To investigate the effects of open and closed kinetic exercises on muscle activity and dynamic balance of ankle joint in adults with chronic ankle instability. Design: Single-blind randomized controlled trial. Methods: The selected 30 subjects are randomly divided into open kinetic chain exercise experimental group (EGI, n=10), closed kinetic chain exercise experimental group (EGII, n=10), and stretching control group (CG, n=10). Open and closed kinetic exercises lasted 30 minutes three times a week for six weeks and stretching exercises performed four actions for 20 seconds and five sets. The measurement tools using surface electromyography to measure muscle activity in the ankle joint. The dynamic balance of the ankle was evaluated using the Y-Balance test. Results: Following the intervention, closed and open kinetic chain exercise group showed significant difference in tibialis anterior and gastrocnemius muscle activity and dynamic balance (P<.05). However, no significant difference in tibialis anterior and gastrocnemius muscle activity and dynamic balance between closed and open kinetic chain exercise group (P<.05). Conclusion: This study provides evidence that closed and open kinetic chain exercise can be presented as an effective exercise for the muscle activity of ankle muscle and dynamic balance of the subject with chronic ankle instability.

Design Application of Corrugated Products for Kinetic Architectural Applications (골판 재료의 건축 분야에서의 적용을 위한 연구)

  • Kim, Ho-Jeong
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.81-87
    • /
    • 2005
  • This project addresses the product identification and design application of corrugated products for kinetic architectural applications. Initially, an architectural approach to product identification was carried out with the end goal of demonstrating application design principles of numerous novel architectural examples from the forest products industry. A design and prototyping stage followed demonstrating such application design principles and functional analysis on various novel architectural examples. The results of coupling product identification with proven application advantages will be of potential value not only to architecture but also to other designers in the arts and sciences. The general motivation for the research arises out of a growing interest corrugated and paper products to be ideally suited for various architectural applications for their unparallel environmental benefits. Applications in architecture that use fewer resources and that adapt efficiently to complex and changing conditions are particularly relevant for an industry (architecture) that is increasingly aware of its environmental responsibilities. Corrugated and paper products are highly under-utilized by the building industry as design choice material for both interior and exterior applications. An increased awareness of the benefits of corrugated and paper products coupled with a process of designing for the total use and reuse will prove to be a valuable means by which issues of energy efficiency and environmental quality of buildings could be enhanced to be more efficient, affordable, and therefore reach a broader audience of users.

  • PDF