• Title/Summary/Keyword: Kinetic/Dynamic Control

Search Result 55, Processing Time 0.021 seconds

Generic optimization, energy analysis, and seismic response study for MSCSS with rubber bearings

  • Fan, Buqiao;Zhang, Xun'an;Abdulhadi, Mustapha;Wang, Zhihao
    • Earthquakes and Structures
    • /
    • v.19 no.5
    • /
    • pp.347-359
    • /
    • 2020
  • The Mega-Sub Controlled Structure System (MSCSS), an innovative vibration passive control system for building structures, is improved by adding lead rubber bearings (LRBs) on top of the substructure. For the new system, a genetic algorithm is used to optimize the dynamic parameters and distributions of dampers and LRBs. The program uses various seismic performance indicators as optimization objectives, and corresponding results are compared. It is found that the optimization procedure for maximizing the energy dissipation ratio yields the best solutions, and optimized models have consistent seismic performances under different earthquakes. Seismic performances of optimized MSCSS models with and without LRBs, as well as the traditional Mega-Sub Structure model, are evaluated and compared under El Centro wave, Taft wave and 20 other artificial waves. In both elastic and plastic analysis, the model with LRBs shows significantly smaller story drift and horizontal acceleration than those of the other two models, and fewer plastic hinges are developed during severe earthquakes. Energy analysis also shows that LRBs installed in proper locations increase the deformation and energy dissipation of dampers, thereby significantly reduce the kinetic, potential, and hysteretic energy in the structure. However, LRBs do not have to be mounted on all the additional columns. It is also demonstrated that LRBs at unfavorable locations can decrease the energy dissipation for dampers. After LRBs are installed, the optimal damping coefficient and the optimal damping exponent of dampers are reduced to produce the best damping effect.

A study on the dynamic performance of self-healing capsule based on carbonyl iron particles(CIPs) in magnetic field (자기장 환경에서 카르보닐철입자(CIPs) 기반 자가치유 캡슐의 동적 성능 분석에 관한 연구)

  • Cheng, Hao;Hu, Jie;Lim, Taeuk;Lee, Yeong Jun;Kim, Sangyou;Jung, Wonsuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.241-242
    • /
    • 2022
  • Recently, related studies on the application of bacterial spores to self-healing concrete have been widely reported. Using the self-healing method of bacterial spores as a kind of pro-environment, the green method is very attractive, but because the living environment of bacterial spores is relatively harsh, it is necessary to have a way to separate the living environment of bacterial spores from the harsh external environment, And release bacterial spores when needed. Therefore, capsules are widely used in self-healing concrete. To enhance the self-healing effect, the capsules need to be evenly distributed in the concrete. Furthermore, we develop a CIP-based smart capsule with controllability. We determined the magnetic force of each capsule by mixing CIP in resin, then mass-fabricating the capsules for self-healing by a microfluidic method, and by measuring the kinetic distance of the capsules containing different amounts of cip under the action of a magnetic field strength. The results show that with the increase of the amount of cip, the active distance of the capsule also increases. When the cip is 8wt%, the active distance reaches 1.75cm. We believe this research can provide momentum for the development of self-healing capsule applications.

  • PDF

Development of a Chameleonic Pin-Art Equipment for Generating Realistic Solid Shapes (실감 입체 형상 생성을 위한 카멜레온형 핀아트 장치 개발)

  • Kwon, Ohung;Kim, Jinyoung;Lee, Sulhee;Kim, Juhea;Lee, Sang-won;Cho, Jayang;Kim, Hyungtae
    • Journal of Broadcast Engineering
    • /
    • v.25 no.4
    • /
    • pp.497-506
    • /
    • 2020
  • A chameleonic surface proposed in this study was a pin-art and 3D display device for generating arbitrary shapes. A smooth and continuous surface was formed using slim telescopic actuators and high-elasticity composite material. Realistic 3D shapes were continuously generated by projecting dynamic mapping images on the surface. A slim telescopic actuator was designed to show long strokes and minimize area for staking. A 3D shape was formed by thrusting and extruding the high-elasticity material using multiple telescopic actuators. This structure was advantageous for generating arbitrary continuous surface, projecting dynamic images and lightening weight. Because of real-time synchronization, a distributed controller based on EtherCAT was applied to operate hundreds of telescopic actuators smoothly. Integrated operating software consecutively generated realistic scenes by coordinating extruded shapes and projecting 3D image from multiple projectors. An opera content was optimized for the chameleon surface and showed to an audience in an actual concert.

Effects of Nordic Walking Exercise on muscular strength, Flexibility, Balance and Pain in Older Woman with Knee Osteoarthritis (노르딕 워킹이 퇴행성 무릎 관절염 노인여성의 근력과 유연성, 균형 및 통증에 미치는 영향)

  • Oh, Yoo-Sung;Kim, Ji-sun;Jang, Woo-Seong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1312-1326
    • /
    • 2019
  • The purpose of this study is to examine whether the 12-week Nordic walking can improve the physical function and arthritis pain of elderly women with osteoarthritis This study were divided into randomly assigned Nordic Walking Exercise Group (n=9) and Control Group (n=7) for 16 Elderly women diagnosed with Osteoarthritis (age: 73±3.79 year, height: 154.3±4.09 cm). The exercise group used Nordic sticks to carry out 30 minutes of Nordic walking exercise three times a week for 12 weeks, and the kinetic intensity was set at 40-60% of HRR. The control group maintained daily life for the same period. Body composition (weight, percentage body fat, skeletal muscle mass), muscular strength, Flexibility (muscular strength of upper and lower limbs, flexibility of upper and lower limbs), balance ability (static balance, dynamic balance) and pain level were measured as subordinate variables. These indicators were measured twice before and after the exercise program. The study shows that percentage body fat and skeletal muscle mass in the body composition function over 12 weeks of Nordic walking exercise have significant effects after the exercise than before (p=004)(p=.003), and it also shows significant interaction effects between the groups and timings(p=.018)(p=.005). In muscular strength, Flexibility factors, there were significant effects between the groups and timings in the upper limb muscular strength and the lower limb flexibility (p=.009)(p=.036), and a significant difference between the exercise group and the control group(p=.006) in the lower limb muscular strength. In addition, in the upper limb flexibility, there was a more significant difference after the exercise than before(p=.020). There were improvement effects after the exercise than before in the balance ability and the static balance(p=.016), but no difference in the dynamic balance(p>.05). In pain, there was a significant improvement after the exercise than before(p=.022), and a significant difference between the exercise group and the control group(p=.013). In conclusion, the 12-week Nordic walking exercise has positive effects on the body composition functions of the elderly women with Osteoarthritis, and has a positive effect on the improvement of upper limb muscular strength and lower limb flexibility in the health fitness factors. These effects are believed to have contributed effectively to the improvement of the level of pain by contributing to the improvement of physical and motor functions of the elderly women with Osteoarthritis. Therefore, it is considered that Nordic walking exercise, which enhances stability and balance of the patients with Osteoarthritis by using poles, is an effective exercise method for the improvement of the body and motor functions by lowering the pain of the joints and reducing the muscular strength and percentage body fat.

Differences in Static Lower Extremity Alignment according to the History of Lateral Ankle Sprain: Efficacy and Limitation of Static Lower Limb Alignment Measurement as a Predictor of Lateral Ankle Sprain (외측 발목 염좌 병력에 따른 정적 하지 정렬 차이: 외측 발목 염좌의 예측인자로서 정적 하지 정렬 검사의 효용성과 한계점)

  • Jeon, Hyung Gyu;Ha, Sunghe;Lee, Inje;Kang, Tae Kyu;Kim, Eun Sung;Lee, Sae Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • Objective: The aim of this study was to investigate 1) the difference in static lower extremity alignment (SLEA) according to a history of lateral ankle sprain (LAS), 2) to identify SLEA factors affecting LAS, and 3) to present the cut-off value and 4) the usefulness and limitations of the SLEA measurement. Method: This case-control study recruited 88 men (age: 27.78±4.69 yrs) and 39 women (age: 24.62±4.20 yrs) subjects with and without LAS. SLEA measurement protocol included Q angle, tibiofemoral angle, genu recurvatum, rear foot (RF) angle, tibal varum and torsion, navicular drop, ankle dorsiflexion range of motion (DF ROM). Independent t-test, logistic regression and receiver operating characteristic (ROC) curve were used for statistical analysis. Results: Men with a history of LAS had significantly smaller Q angles both in standing and in supine position, while women with a history of LAS had significantly greater DF ROM in non-weight bearing (NWB; p < 0.05). Logistic regression model suggests tibial varum (OR = 0.779, p = 0.021) and WB DF ROM (OR = 1.067, p = 0.045) were associated with LAS in men. In case of women, there were no significant SLEA factors for LAS, however, ROC curve analysis revealed standing RF angle (AUC = 0.647, p = 0.028) and NWB DF ROM (AUC = 0.648, p = 0.026) could be affecting factors for LAS. Conclusion: There are differences in SLEA according to the history of LAS, furthermore, the identified items were different by sex. In case of men, tibial varum and WB DF ROM affect LAS occurrence. Standing RF angle and NWB DF ROM of women could be a predictor for LAS. However, since the sensitivity and specificity in most of the SLEA measurements are low, kinematic in dynamic tasks should be considered together for a more accurate evaluation of LAS risk.