• Title/Summary/Keyword: Kinematics

Search Result 1,690, Processing Time 0.034 seconds

Key-Frame Editor for 3D Sign-Language Animation Using Inverse Kinematics (역운동학을 이용한 3차원 수화 애니메이션의 키 프레임 에디터)

  • ;;Yoshinao Aoki
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.655-658
    • /
    • 1999
  • In this paper we design a key-frame editor for 3D sign-language animation using the inverse kinematics. Using the editor, we can calculate the joint angles for two arms automatically. Up to now we have computed the values of the joint angles using the forward kinematics, where we have determined the values heuristically based on our experiences. To overcome the drawbacks, we employ the arm transformation matrix of the inverse kinematics. Experimental results show a possibility that the proposed method could be used for making up the sign-language communication dictionaries.

  • PDF

A Novel Analytic Approach for the Forward Kinematics of the 3-6-type Stewart Platform using Tetrahedron Configurations (사면체 조합을 이용한 3-6형태의 스튜어트 플랫폼의 정기구학의 새로운 해석법)

  • 송세경;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.430-430
    • /
    • 2000
  • This paper presents a new analytic approach using tetrahedrons to determine the forward kinematics of the 3-6-type Stewart platform. By using of the tetrahedral geometry, this approach has the advantage of greatly reducing the complexity of formulation and the computational burden required by the conventional methods which have been solved the forward kinematics with three unknown angles. As a result, this approach allows a significant abbreviation in the formulations and provides an easier means of obtaining the solutions. The proposed method is well verified through a series of numerical simulation.

  • PDF

A Study on Modeling of Mobile Robot Using Basic Homogeneous Transformation(BHT) (Basic Homogeneous Transformation(BHT)을 이용한 이동로봇 기구학 모델링에 대한 연구)

  • 류신형;이기철;이성렬;박민용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.265-265
    • /
    • 2000
  • In this paper the systematic modeling method of general wheeled mobile robot is proposed. First we show how to describe kinematics properties of wheeled mobile robot in the method formulating constraint equations using Basic Homogeneous Transform(BHT) which is used mainly the kinematics modeling of manipulator, and, under assumption it's provided part of nullvector in given constraint equations, find kinematics model of mobile robot related to actuators in real robot.

  • PDF

New Efficient Direct Kinematics for 6-dof Parallel-Serial Haptic Devices

  • Song, Se-Kyong;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.83.2-83
    • /
    • 2001
  • This paper presents a new formulation approach to reduce computational burden of the direct kinematics of 6-dof haptic devices with three sets of a parallel-serial linkage. Their direct kinematics has been formulated through employing the Denavit-Hartenberg notation, which results in complicated formulation procedures and heavy computational burden. For reducing these problems, this paper reconfigures the haptic devices into an equivalent kinematic model of the 3-6 Stewart-Gough Platform that has three connecting joints on the moving platform. Moreover, the direct kinematics of the 3-6 Platform can be effectively formulated by using the proposed Tetrahedron Approach.

  • PDF

Effectiveness and safety of rotary and reciprocating kinematics for retreatment of curved root canals: a systematic review of in vitro studies

  • Lucas Pinho Simoes;Alexandre Henrique dos Reis-Prado;Carlos Roberto Emerenciano Bueno;Ana Cecília Diniz Viana ;Marco Antonio Hungaro Duarte ;Luciano Tavares Angelo Cintra;Cleidiel Aparecido Araujo Lemos;Francine Benetti
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.2
    • /
    • pp.22.1-22.18
    • /
    • 2022
  • Objectives: This systematic review (register-osf.io/wg7ba) compared the efficacy and safety of rotary and reciprocating kinematics in the removal of filling material from curved root canals. Materials and Methods: Only in vitro studies evaluating both kinematics during retreatment were included. A systematic search (PubMed/MEDLINE, Scopus, and other databases, until January 2021), data extraction, and risk of bias analysis (Joanna Briggs Institute checklist) were performed. Efficacy in filling removal was the primary outcome. Results: The search resulted in 2,795 studies, of which 15 were included. Efficacy was measured in terms of the remaining filling material and the time required for this. Nine studies evaluated filling material removal, of which 7 found no significant differences between rotary and reciprocating kinematics. Regarding the time for filling removal, 5 studies showed no difference between both kinematics, 2 studies showed faster results with rotary systems, and other 2 showed the opposite. No significant differences were found in apical transportation, centering ability, instrument failure, dentin removed and extruded debris. A low risk of bias was observed. Conclusions: This review suggests that the choice of rotary or reciprocating kinematics does not influence the efficacy of filling removal from curved root canals. Further studies are needed to compare the kinematics safety in curved root canals.

An analysis Inverse Kinematics for Real Time Operation of Industrial Robot (산업용 로봇의 실시간 운용을 위한 역기구학 해석)

  • 이용중
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.104-111
    • /
    • 1998
  • This study solves the inverse kinematics problem of industrial FANUC robot. Because every joint angle of FANUC robot is dependent on the position of end-effector and the direction of approach vector, arm metrix T6 is very complicated and each joint angle is a function of other joint angles. Therefore, the inverse kinematics problem can not be solved by conventional methods. Noticing the fact that if one joint angle is known, the other joint angles are calculated by the algebraic methods. $ heta$1 is calculated using neumerical analysis method, and solves inverse kinematics problem. This proposed method, in this study, is more simpler and faster than conventional methods and is very useful in the real-time control of the manipulator.

  • PDF

Forward Kinematic Analysis of Casing Oscillator (케이싱 오실레이터의 순기구학 해석)

  • Nam, Yun-Joo;Park, Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1845-1855
    • /
    • 2004
  • This paper presents the forward kinematics of the Casing Oscillator that is a construction machine. The Structure of the Casing Oscillator is similar to those of 4 degree-of-freedom mechanisms with a redundancy. With analytical (geometrical) methods, the solutions of the forward position kinematics problem are significantly found by both solving an 8$^{th}$ -order polynomial equation in one unknown variable and using one over-constraint geometrical equation which can be derived under the condition of a redundancy. The proposed forward kinematics has closed-form solutions and allows Auto-Balancing control of the moving platform in real time. Numerical examples are presented and the results are verified by an inverse kinematics analysis.

Kinematic Analysis and Optimal Design of 3-PPR Planar Parallel Manipulator

  • Park, Kee-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.528-537
    • /
    • 2003
  • This paper proposes a 3-PPR planar parallel manipulator, which consists of three active prismatic Joints, three passive prismatic joints, and three passive rotational joints. The analysis of the kinematics and the optimal design of the manipulator are also discussed. The proposed manipulator has the advantages of the closed type of direct kinematics and a void-free workspace with a convex type of borderline. For the kinematic analysis of the proposed manipulator, the direct kinematics, the inverse kinematics, and the inverse Jacobian of the manipulator are derived. After the rotational limits and the workspaces of the manipulator are investigated, the workspace of the manipulator is simulated. In addition, for the optimal design of the manipulator, the performance indices of the manipulator are investigated, and then an optimal design procedure Is carried out using Min-Max theory. Finally. one example using the optimal design is presented.

Overview of Various Measurement Tools for Shoulder Kinematics

  • Kim, Doo Sup;On, Myoung Gi;Yeom, Jun Seop
    • Clinics in Shoulder and Elbow
    • /
    • v.20 no.4
    • /
    • pp.244-249
    • /
    • 2017
  • Shoulder kinematics is important, as it is associated with shoulder arthropathy and pain mechanisms. Various static and dynamic analysis methods are prevalent for shoulder kinematics. These include 2-dimensional plane x-ray, computed tomography, and magnetic resonance imaging, cadaver study, electromagnetic motion analysis, transcortical bone pins technique, and in vivo 3-dimensional motion analysis. Although these methods provide the value of the shoulder kinematics angle, they are unable to explain why such changes occur. Since each method has its pros and cons, it is important to understand all factors accurately, and to choose a method that best meets the purpose of the researcher.

Inverse Kinematics Analysis of 7-DOF Anthropomorphic Robot Arm using Conformal Geometric Algebra (등각 기하대수를 이용한 7자유도 로봇 팔의 역기구학 해석)

  • Kim, Je-Seok;Ji, Yong-Kwan;Park, Jahng-Hyon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1119-1127
    • /
    • 2012
  • In this paper, we present an inverse kinematics of a 7-dof Anthropomorphic robot arm using conformal geometric algebra. The inverse kinematics of a 7-dof Anthropomorphic robot arm using CGA can be computed in an easy way. The geometrically intuitive operations of CGA make it easy to compute the joint angles of a 7-dof Anthropomorphic robot arm which need to be set in order for the robot to reach its goal or the positions of a redundant robot arm's end-effector. In order to choose the best solution of the elbow position at an inverse kinematics, optimization techniques have been proposed to minimize an objective function while satisfying the euler-lagrange equation.