• 제목/요약/키워드: Kinematic interaction

검색결과 81건 처리시간 0.029초

궤도차량과 토양의 상호관계에 대한 연구 (Study of the Interaction between a Tracked Vehicle and the terrain)

  • 박천서;이승종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.144-147
    • /
    • 2001
  • The planar tracked vehicle model used in this investigation consists of two kinematically decoupled subsystem, i.e., the chassis subsystem and the track subsystem. The chassis subsystem include the chassis frame, sprocket, idler and rollers, while the track subsystem is represented as a closed kinematic chain consisting of rigid links interconnected by revolute joints, In this paper, the recursive kinematic and dynamic formulation of the tracked vehicle is used to find the vertical forces and the distances of the certain track moved in the driving direction along the track. These distances and vertical forces obtained are used to calculate the sinkage of a terrain. The FEM is adopted to analyze the interaction between the tracked vehicle and terrain. The terrain is represented by a system of elements with specified constitutive relationships and considered as a piecewise linear elastic, plastic and isotropic material. When the tracked vehicle is moving with different speeds on the terrain, the elastic and plastic deformations and the maximum sinkage for the four different types of a isotropic soil are simulated.

  • PDF

Star-Gas Misalignment in Galaxies: II. Origins Found from the Horizon-AGN Simulation

  • Khim, Donghyeon J.;Yi, Sukyoung K.
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.29.1-29.1
    • /
    • 2021
  • There have been many studies aiming to reveal the origins of the star-gas misalignment found in galaxies, but there still is a lack of understanding of the contribution from each formation channel candidate. We explore the properties, origins, and lifetimes of the star-gas misalignment using Horizon-AGN, a large-volume cosmological simulation. First, the misalignment fraction shows a strong anti-correlation with the kinematic morphology (V/sigma) and the cold gas fraction of the galaxy. This result is consistent with the result of integral field spectroscopy observations. Second, we have identified four main formation channels of misalignment and quantified their level of contribution: mergers (35%), interaction with nearby galaxies (23%), interaction with dense environments or their central galaxies (21%), and secular evolution including smooth accretion from neighboring filaments (21%). Third, the decay timescale of the misalignment is strongly linked with the kinematic morphology of the galaxy: early-type galaxies (2.28 Gyr) tend to have a longer misalignment lifetime than LTGs (0.49 Gyr). We also found that the morphology and cold gas fraction are both and independently anti-correlated with the misalignment lifetime.

  • PDF

유연한 기초 위에 세워진 구조물의 지진거동 (Seismic Response of Structure on Flexible Foundation)

  • 김용석
    • 한국지진공학회논문집
    • /
    • 제1권1호
    • /
    • pp.11-17
    • /
    • 1997
  • 그 동안 구조물에 대한 지진해석이 기초와 지반의 특성을 무시하고 기초가 매우 단단한 것으로 가정하고 수행되었다. 최근 구조물-지반 상호작용에 관한 연구결과 구조물 지진거동이 기초와 지반의 특성에 따라 심하게 영향을 받을 수 있다는 것이 알려졌다. 전형적인 구조물-지반 상호작용 영향은 무한강성 무질량 기초의 운동학적 상호작용과 지반과 구조물 사이에서 발생하는 관성상호작용이다. 운동학적 상호작용은 묻힌 기초의 경우에는 중요하지만, 수직으로 전달되는 지진파를 받는 지표면상 기초의 경우에는 무시될 수 있다. 이 논문에서는 멕시코시티 4개 건물에 대해 관성상호작용만을 고려하고 1985년 멕시코시티 동서방향 지진기록을 사용하여 구조물의 지진거동을 조사하였다. 연구는 지표면상 기초나 말뚝기초를 가진 구조물에 대해 선형 및 비선형 지반조건을 고려하여 수행하였으며, 연구결과를 매우 견고한 기초를 갖는 구조물에 대한 것과 비교하였다.

  • PDF

기초체계의 운동학적 상호작용을 고려한 고층건물의 응답스펙트럼에 미치는 고차모드의 영향 (Effects of Higher Modes on the Response Spectra of High-rise Buildings considering the Kinematic Interaction of a Foundation System)

  • 김용석
    • 한국지진공학회논문집
    • /
    • 제19권3호
    • /
    • pp.85-92
    • /
    • 2015
  • Response spectra of a building are made with a SDOF system taking into account a first mode shape, even though higher modes may affect on the dynamic responses of a high-rise building. A soft soil layer under a building also affects on the responses of a building. In this study, seismic responses of a MDOF system were investigated to examine the effects of higher modes on the response of a tall building by comparing them with those of a SDOF system including the kinematic interaction effect. Study was performed using a pseudo 3D finite element program with seven bedrock earthquake records downloaded from the PEER database. Effects of higher modes on the seismic responses of a tall building were investigated for base shear force and base moment of a MDOF system including story shear forces and story moments. Study results show that higher modes of a MDOF system contribute to a reduction of base shear force up to 1/4-1/5 of KBC and base moment. The effect of higher modes is more significant on the base shear force than on the base moment. Maximum story shear force and moment occurred at the top part of a building rather than at a base in the cases of tall buildings differently from short buildings, and higher modes of a tall building affected on the base forces making them almost constant at the base. A soft soil layer also affects some on the base shear force of a high-rise building independently on the soft soil type, but a soft soil effect is prominent on the base moment.

A Method for Creating Natural Animation by Interaction with Operators

  • Lee, Ji-Hong;Kim, Sung-Su
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.117.3-117
    • /
    • 2001
  • This paper deals with a method for creating animation by interaction with animation operators. Operators are able to edit/transform any given motion data to more natural animations by the motion editing method proposed in this paper. The proposed technique is especially useful when some paris of character structure are changed. The system to be proposed is designed to fully utilize the experience of animation operators as well as to accomodate semi-automation process with spline interpolation. An example for retargeting a given motion data to a new character of dramatically changed kinematic structure.

  • PDF

Application of a fixed Eulerian mesh-based scheme based on the level set function generated by virtual nodes to large-deformation fluid-structure interaction

  • Hashimoto, Gaku;Ono, Kenji;Okuda, Hiroshi
    • Interaction and multiscale mechanics
    • /
    • 제5권3호
    • /
    • pp.287-318
    • /
    • 2012
  • We apply a partitioned-solution (iterative-staggered) coupling method based on a fixed Eulerian mesh with the level set function to a large-deformation fluid-structure interaction (FSI) problem where a large-deformable thin structure moves in a high-speed flow field, as an airbag does during deployment. This method combines advanced fluid and structure solvers-specifically, the constrained interpolation profile finite element method (CIP-FEM) for fluid Eulerian mesh and large-deformable structural elements for Lagrangian structural mesh. We express the large-deformable interface as a zero isosurface by the level set function, and introduce virtual nodes with level sets and structural normal velocities to generate the level set function according to the large-deformable interfacial geometry and enforce the kinematic condition at the interface. The virtual nodes are located in the direction normal to the structural mesh. It is confirmed that application of the method to unfolded airbag deployment simulation shows the adequacy of the method.

A general method of analysis of composite beams with partial interaction

  • Ranzi, G.;Bradford, M.A.;Uy, B.
    • Steel and Composite Structures
    • /
    • 제3권3호
    • /
    • pp.169-184
    • /
    • 2003
  • This paper presents a generic modelling of composite steel-concrete beams with elastic shear connection. It builds on the well-known seminal technique of Newmark, Siess and Viest, in order to formulate the partial interaction formulation for solution under a variety of end conditions, and lends itself well for modification to enable direct quantification of effects such as shrinkage, creep, and limited shear connection slip capacity. This application is possible because the governing differential equations are set up and solved in a fashion whereby inclusion of the kinematic and static end conditions merely requires a statement of the appropriate constants of integration that are generated in the solution of the linear differential equations. The method is applied in the paper for the solution of the well-studied behaviour of simply supported beams with partial interaction, as well as to provide solutions for a beam encastr$\acute{e}$ at its ends, and for a propped cantilever.

궤도차량과 토양의 상호작용에 대한 연구 (Study of the Interaction between Tracked Vehicle and Terrain)

  • 박천서;이승종
    • 한국정밀공학회지
    • /
    • 제19권2호
    • /
    • pp.140-150
    • /
    • 2002
  • The planar tracked vehicle model used in this investigation consists of two kinematically decoupled subsystems, i.e., the chassis subsystem and the track subsystem. The chassis subsystem includes the chassis frame, sprocket, idler and rollers, while the track subsystem is represented as a closed kinematic chain consisting of rigid links interconnected by revolute joints. In this study, the recursive kinematic and dynamic formulation of the tracked vehicle is used to find the vertical terce and the distance of an arbitrary track moved in the driving direction along the track. These distances and vertical forces obtained are used to get the deformation and sinkage of a terrain. The FEM(Finite Element Method) is adopted to analyze the interaction between tracked vehicle and terrain. The terrain is represented by a system of elements wish specified constitutive relationships and considered as a piecewise linear elastic, plastic and isotropic material. When the tracked vehicle is moving with different speeds on the terrain, the elastic and plastic deformations and the maximum sinkage for the four different types of isotropic soils are simulated.

데이터 글로브를 이용한 3차원 손동작 인식 (3-D Hand Motion Recognition Using Data Glove)

  • 김지환;박진우;;김태성
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.324-329
    • /
    • 2009
  • Proactive computing의 핵심 기술인 손동작 인식 (Hand Motion Recognition, HMR) 기술은 인간과 컴퓨터 사이의 상호작용(Human Computer Interaction, HCI) 분야에서 많은 연구가 진행되고 있다. 본 연구에서는 3축 가속도 센서를 부착한 data glove를 제작하고, 3차원 손 모델을 구현한 후, 이를 이용한 손동작 인식 기술을 개발하였다. Data glove는 가상현실에 대한 입력 장치로써 본 논문에서는 3축 가속도 센서를 사용하여 획득된 신호를 wireless communication으로 PC에 전송할 수 있도록 구현하였다. 손 모델링은 ellipsoid를 이용한 kinematic chain 이론 바탕의 3차원 손 모델을 구현하였으며, data glove에서 얻어진 가속도 정보에 rule 기반의 알고리즘을 적용하여 구현된 3차원 손 모델을 통하여 간단한 손동작(가위, 바위, 보)을 인식하였다.

  • PDF

노인의 무릎관절 전치환술에서 보행분석 비교 (The Comparison of Gait Analysis in Elderly Patients Before and After Total Knee Arthroplasty)

  • 조운수;김상영;황태연
    • 대한임상전기생리학회지
    • /
    • 제10권2호
    • /
    • pp.31-35
    • /
    • 2012
  • Purpose : The purpose of this study was to investigate the effect of kinematic variables by analysis of a gait in older. Methods : This study selected nine in older adults with osteoarthritis. The Kinematic variables during walk were compared analyzed using motion analysis. Results : The findings of this study are as follows. Stance time showed significant difference within-subject groups and interaction within-subjects and time. The swing and stride time showed a no significant interaction within-subjects and time. Swing time showed a no significant difference according to time and within-subjects. Stride time showed a significant difference according to time. But, stride time showed a no significant difference according to within-subjects. Conclusion : These findings of this study indicate that when the patients with total knee arthroplasty decreased stability. Therefore, stance and stride time showed increase when walking, because to decrease the weight bearing that is delivered to knee. And swing time showed decrease.