• Title/Summary/Keyword: Kinematic Coordinates Estimation

Search Result 7, Processing Time 0.023 seconds

The Estimation for the Forward Kinematic Solution of Stewart Platform Using the Neural Network (신경망 기법을 이용한 스튜어트 플랫폼의 순기구학 추정)

  • Lee, Hyung-Sang;Han, Myung-Chul;Lee, Min-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.186-192
    • /
    • 1999
  • This paper introduces a study of a method for the forward kinematic analysis, which finds the 6 DOF motions and velocities from the given six cylinder lengths in the Stewart platform. From the viewpoints of kinematics, the solution for the inverse kinematic is easily found by using the vectors of the links which are composed of the joint coordinates in base and plate frames, to act contrary to the serial manipulator, but forward kinematic is difficult because of the nonlinearity and complexity of the Stewart platform dynamic equation with the multi-solutions. Hence we, first in this study, introduce the linear estimator using the Luenberger's observer, and the estimator using the nonlinear measured model for the forward kinematic solutions. But it is difficult to find the parameter of the design for the estimation gain or to select the estimation gain and the constant steady state error exists. So this study suggests the estimator with the estimation gain to be learned by the neural network with the structure of multi-perceptron and the learning method using back propagation and shows the estimation performance using the simulation.

  • PDF

Experimental Assessment on Accuracy of Kinematic Coordinate Estimation for CORS by GPS Medium-range Baseline Processing Technique (GPS 상시관측소 동적 좌표추정을 위한 중기선해석 정확도의 실험적 분석)

  • Cho, Insoo;Lee, Hungkyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.79-90
    • /
    • 2016
  • The study has purposed in evaluating experiences for achievable accuracy and precision of time series at 3-D coordinates. It has been estimated from the kinematic medium-range baseline processing of Continuously Operating Reference Stations (CORS) for the potential application of crustal displacement analysis during an earthquake event. To derive the absolute coordinates of local CORS, it is highly recommended to include some of oversea country references, since it should be compromised of an observation network of the medium-range baselines within the length range from tens of kilometers to about 1,000 kilometers. A data processing procedure has reflected the dynamics of target stations as the parameter estimation stages, which have been applied to a series of experimental analysis in this research at the end. From the analysis of results, we could be concluded in that the subcentimeters-level of positioning accuracy and precision can be achievable. Furthermore, the paper summarizes impacts of satellite ephemeris, data lengths and levels of initial coordinate constraint into the positioning performance.

Experimental Implementation of Continuous GPS Data Processing Procedure on Near Real-Time Mode for High-Precision of Medium-Range Kinematic Positioning Applications (고정밀 중기선 동적측위 분야 응용을 위한 GPS 관측데이터 준실시간 연속 처리절차의 실험적 구현)

  • Lee, Hungkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.31-40
    • /
    • 2017
  • This paper deals with the high precision of GPS measurement reduction and its implementation on near real-time and kinematic mode for those applications requiring centimeter-level precision of the estimated coordinates, even if target stations are a few hundred kilometers away from their references. We designed the system architecture, data streaming and processing scheme. Intensive investigation was performed to determine the characteristics of the GPS medium-range functional model, IGS infrastructure and some exemplary systems. The designed system consisted of streaming and processing units; the former automatically collects GPS data through Ntrip and IGS ultra-rapid products by FTP connection, whereas the latter handles the reduction of GPS observables on static and kinematic mode to a time series of the target stations' 3D coordinates. The data streaming unit was realized by a DOS batch file, perl script and BKG's BNC program, whereas the processing unit was implemented by definition of a process control file of BPE. To assess the functionality and precision of the positional solutions, an experiment was carried out against a network comprising seven GPS stations with baselines ranging from a few hundred up to a thousand kilometers. The results confirmed that the function of the whole system properly operated as designed, with a precision better than ${\pm}1cm$ in each of the positional component with 95% confidence level.

A Study on the Real-Time Vision Control Method for Manipulator's position Control in the Uncertain Circumstance (불확실한 환경에서 매니퓰레이터 위치제어를 위한 실시간 비젼제어기법에 관한 연구)

  • Jang, W.-S.;Kim, K.-S.;Shin, K.-S.;Joo, C.;;Yoon, H.-K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.87-98
    • /
    • 1999
  • This study is concentrated on the development of real-time estimation model and vision control method as well as the experimental test. The proposed method permits a kind of adaptability not otherwise available in that the relationship between the camera-space location of manipulable visual cues and the vector of manipulator joint coordinates is estimate in real time. This is done based on a estimation model ta\hat generalizes known manipulator kinematics to accommodate unknown relative camera position and orientation as well as uncertainty of manipulator. This vision control method is roboust and reliable, which overcomes the difficulties of the conventional research such as precise calibration of the vision sensor, exact kinematic modeling of the manipulator, and correct knowledge of position and orientation of CCD camera with respect to the manipulator base. Finally, evidence of the ability of real-time vision control method for manipulator's position control is provided by performing the thin-rod placement in space with 2 cues test model which is completed without a prior knowledge of camera or manipulator positions. This feature opens the door to a range of applications of manipulation, including a mobile manipulator with stationary cameras tracking and providing information for control of the manipulator event.

  • PDF

A Study on the Determination of 3-D Object's Position Based on Computer Vision Method (컴퓨터 비젼 방법을 이용한 3차원 물체 위치 결정에 관한 연구)

  • 김경석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.26-34
    • /
    • 1999
  • This study shows an alternative method for the determination of object's position, based on a computer vision method. This approach develops the vision system model to define the reciprocal relationship between the 3-D real space and 2-D image plane. The developed model involves the bilinear six-view parameters, which is estimated using the relationship between the camera space location and real coordinates of known position. Based on estimated parameters in independent cameras, the position of unknown object is accomplished using a sequential estimation scheme that permits data of unknown points in each of the 2-D image plane of cameras. This vision control methods the robust and reliable, which overcomes the difficulties of the conventional research such as precise calibration of the vision sensor, exact kinematic modeling of the robot, and correct knowledge of the relative positions and orientation of the robot and CCD camera. Finally, the developed vision control method is tested experimentally by performing determination of object position in the space using computer vision system. These results show the presented method is precise and compatible.

  • PDF

Influence of Radome Types on GNSS Antenna Phase Center Variation (GNSS 안테나 위상중심변동에 레이돔이 미치는 영향)

  • Yun, Seonghyeon;Lee, Hungkyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.11-21
    • /
    • 2020
  • This paper deals with the impact of a GNSS (Global Navigation Satellite System) antenna radome on the PCV (Phase Center Variations) and the estimated kinematic coordinates. For the Trimble and Leica antennas, specially set up CORS (Continuously Operation Reference Stations) in Korea, the PCC (Phase Center Corrections) were calculated and compared for NONE, SCIS, SCIT, and TZGD radome from the PCV model published by the IGS (International GNSS Services). The results revealed that the PCC differences compared to the NONE were limited to about 1mm in the horizontal component while those of the vertical direction ranged from a few millimeters to a maximum of 7mm. Among the radomes of which PCV were compared, the SCIT had the most significant influence on the vertical component, and its GPS (Global Positioning System) L2 and L2 PCC (Phase Center Corrections) had opposite direction. As a result of comparing the kinematic coordinates estimated by the baseline processing of 7 CORSs with an application of the PCV models of the various radomes, the SCIS which was actually installed at CORS in Korea showed 3.4mm bias, the most substantial impact on the ellipsoidal height estimation whereas the SCIT model resulted in relatively small biases.

Accuracy Assessment of Aerial Triangulation of Network RTK UAV (네트워크 RTK 무인기의 항공삼각측량 정확도 평가)

  • Han, Soohee;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.663-670
    • /
    • 2020
  • In the present study, we assessed the accuracy of aerial triangulation using a UAV (Unmanned Aerial Vehicle) capable of network RTK (Real-Time Kinematic) survey in a disaster situation that may occur in a semi-urban area mixed with buildings. For a reliable survey of check points, they were installed on the roofs of buildings, and static GNSS (Global Navigation Satellite System) survey was conducted for more than four hours. For objective accuracy assessment, coded aerial targets were installed on the check points to be automatically recognized by software. At the instance of image acquisition, the 3D coordinates of the UAV camera were measured using VRS (Virtual Reference Station) method, as a kind of network RTK survey, and the 3-axial angles were achieved using IMU (Inertial Measurement Unit) and gimbal rotation measurement. As a result of estimation and update of the interior and exterior orientation parameters using Agisoft Metashape, the 3D RMSE (Root Mean Square Error) of aerial triangulation ranged from 0.153 m to 0.102 m according to the combination of the image overlap and the angle of the image acquisition. To get higher aerial triangulation accuracy, it was proved to be effective to incorporate oblique images, though it is common to increase the overlap of vertical images. Therefore, to conduct a UAV mapping in an urgent disaster site, it is necessary to acquire oblique images together rather than improving image overlap.