• Title/Summary/Keyword: Kinematic Accuracy

Search Result 315, Processing Time 0.027 seconds

The Latest Performance of Galileo Kinematic PPP at DAEJ Reference Station in South Korea

  • Choi, Byung-Kyu;Yoo, Sung-Moon;Roh, Kyoung-Min;Park, Pilho;Park, Jong-Uk
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.1
    • /
    • pp.15-21
    • /
    • 2020
  • In October 2019, the European Galileo navigation system operates a total of 24 satellites, two of them are in the testing phase. There are enough satellites in operation to enable precise point positioning (PPP) using Galileo signals. The number of visible satellites for Galileo in South Korea is investigated. In addition, to assess the latest performance of the Galileo kinematic PPP, data received at DAEJ reference station from October 1 to October 7, 2019, are analyzed. Galileo kinematic PPP presents some results in two categories, single-frequency PPP (SPPP) and dual-frequency PPP (DPPP). The positioning accuracy for Galileo kinematic SPPP solutions is less than 1 m root mean square (RMS) in all direction components. The Galileo kinematic DPPP achieves the positioning accuracy with an RMS value of less than 7 cm in all direction components. The results show that the latest performance of Galileo kinematic PPP at DAEJ station in South Korea is still relatively poor compared to GPS kinematic PPP. However, the residuals of Galileo code measurements are smaller than those of GPS code measurements.

A Study on the Applicability of the Kinematic and the Static GPS Methods for Coastal Ocean Structure Survey

  • Lee, Byung-Gul;Yang, Sung-Kee;Kang, In-Jun
    • Journal of Environmental Science International
    • /
    • v.11 no.2
    • /
    • pp.103-110
    • /
    • 2002
  • The position fixing usually is determined by triangulation, traverse surveying and astronomy surveying. However, when the station is moving, it is impossible to determine its position continuously by the former method. By a satellite positioning method(GPS), this problem can be solved. In our study, we used two methods to determine the length and coordinate of a point position. One is a kinematic GPS method and the other is a static one. Each is based on carrier phase measurement and employs a relative position technique. We implemented observation experiments such as Geodimeter and DGPS(Differential GPS) successfully. To estimate the accuracy between the kinematic and static methods, we compared the results of Geodimeter, the kinematic, and the static. The results showed that the static is relatively a little more accurate than the kinematic. However, in the kinematic mode, when we received the GPS data for a long time, we found that the kinematic also had a high accuracy value for the length survey Finally, we applied the GPS to Jeju Harbor Breakwater to examine the applicability of GPS for coastal ocean structure based on the kinematics and the statics, respectively.

An Accuracy Improvement Algorithm for the Manipulators with Closed-Form Inverse Kinematic Solutions (닫힌 형태의 역기구학 해를 갖는 매니퓰레이터의 정밀도 개선 알고리즘)

  • Cho, Hye-Kyung;Cho, Sung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1093-1098
    • /
    • 2000
  • This paper presents an efficient algorithm for including the kinematic calibration data into the motion controller to improve the positioning accuracy of the manipulators. Rather than spending several iterations for finding the inverse solution of the calibrated kinematics, our approach requires only the nominal inverse solution and the calibrated forward kinematics for providing a better position command promptly. Thus, real-time application is guaranteed whenever the manipulators nominal inverse solution can be expressed in a closed form. Experimental results show that the line tracking performances can be remarkably improved by employing our algorithm.

  • PDF

KINEMATIC GPS POSITIONING WITH NETWORK-DERIVED IONOSPHERIC DELAYS

  • Hong, Chang-Ki;Grejner-Brzezinska, Dorota A.;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.386-389
    • /
    • 2007
  • Currently, fast and accurate long baseline positioning in kinematic mode is a challenging topic, but positional accuracy can be improved with the help of the network-derived external ionospheric corrections. To provide not only ionospheric corrections, but also their variances, satellite-by-satellite interpolation for the ionospheric delays is performed using the least-squares collocation (LSC) method. Satellite-by-satellite interpolation has the advantage in that the vertical projection used in single-layer ionospheric model is not required. Also, more reliable user positioning and the corresponding accuracy assessment can be obtained by providing not only external ionospheric corrections but also their variances. The rover positioning with and without the external ionospheric delays in both rapid-static and kinematic mode was performed and analyzed. The numerical results indicate that the improvement in the positioning quality is achieved using the proposed method. With the TAMDEF network in Antarctica, 18 % improvement in mean time-to-fix in kinematic mode was achieved.

  • PDF

Study on Kinematic Calibration Method of Stewart Platforms (스튜어트 플랫폼의 기구학적 교정기법에 관한 연구)

  • Goo, Sang-Hwa;Son, Kwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.168-172
    • /
    • 2001
  • The accuracy problem of robot manipulators has long been one of the principal concerns in robot design and control. A practical and economical way of enhancing the manipulator accuracy, without affecting its hardware, is kinematic calibration. In this paper an effective and practical method is presented for kinematic calibration of Stewart platforms. In our method differential errors in kinematical parameters are linearly related to differential errors in the platform pose, expressed through the forward kinematics. The algorithm is tested using simulated measurement in which measurement noise is included.

  • PDF

The Effects of Accuracy on Skill Level and Eye-Tracking Type in Golf Putting (숙련도와 시선형태가 골프퍼팅의 정확성에 미치는 영향)

  • Woo, Byung-Hoon;Kim, Chang-Won;Park, Yang-Sun;Lee, Kun-Chun;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.4
    • /
    • pp.729-738
    • /
    • 2009
  • The purpose of this study was to analyze the impact accuracy and kinematic parameters of skill level and eye-tracking type during putting strokes. For comparison, five elite golfers and five novice golfers participated in this study. Three-dimensional kinematic data were collected for each subject while 10 putting trials were performed for each skill level and eye-tracking type. The APAS system was used to compute the impact accuracy and kinematic parameters of putter heads. The putting stroke was divided into three phases: back swing, downswing, and follow-through. The findings indicated that significant differences were found in skill level as it affected the rate of success. For impact accuracy and the displacement of putter heads, a significant difference was found for the skill level, particularly in backs-wing and follow-through. In addition, the displacement of the putter head had a greater influence on stroke accuracy than on velocity.

Analysis of the Accuracy of Kinematic GPS Positioning (Kinematic GPS에 의한 3차원 위치결정의 정확도 분석)

  • 강준묵;김홍진;이형석
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.11 no.2
    • /
    • pp.79-87
    • /
    • 1993
  • Executing various constructions and national land planning, it has rised importance how to acquire 3-dimensional geographical information efficiently. In conjunction with this, the concerned parties are interested in the accuracy of GPS positioning and applications. This study suggest the efficiency and possibility to apply geographical information construction by kinematic GPS surveying as comparing kinematic GPS results with triangulation, trilateration and static GPS results. In this study, we try to compare static with kinematic and can determine 3-D positions with difference of 6 mm in distance, 2"/10,000-4"/10,000, 20 cm in latitude, longitude and height at local area. In addition, difference from conventional surveying is about 1"/l0,000-3"/10,000 in horizontal. Therefore it is expected to apply kinematic GPS to make out topographic map and to construct data base associated with GIS.associated with GIS.

  • PDF

A Study on Measurement of Dynamic Accuracy Using Grid Encoder in NC Machine Tools (Grid Encoder를 이용한 NC공작기계 동적정밀도 측정에 관한 연구)

  • 이찬호;이방희;김성청
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.378-381
    • /
    • 2003
  • Efficient development of method on a performance evaluation for machine tools has been regarded as the most important work for accuracy and quality enhancement to every user and manufacturer. A evaluation method of accuracy for machine tools has been studied recently according to the rapid increase of interest in precision machine tools. To this point of view, the circular interpolation test of machine tools is recognized as the most useful method to distinguish a dynamic accuracy of NC machine tools by ISO and ANSI/ASME, etc. In this paper, we have studied and developed the form measurement system with grid encoder to analyse the final accuracy of NC machine tools. we have analyzed the servo system error and geometric error of NC machine tools through measuring a dynamic error signal by this system. and then we verified the experimental result and enhanced the reliability by means of comparing the characteristics of the developed system with the kinematic ball-bar system.

  • PDF

A Study on Kinematic Positioning by GPS Platformed on Moving Vehicle (이동차량에 탑재된 GPS의 동적 위치측정에 관한 연구)

  • 최병길
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.4
    • /
    • pp.373-381
    • /
    • 1999
  • Mobile Mapping System can be defined as vehicle mapping system which collects rapidly spatial data by integrated Gps/digital imaging system. Kinematic positioning by GPS is essential technology of Mobile Mapping System. This paper aims at analysing the accuracy and efficiency of kinematic positioning by GPS platformed on moving vehicle. For the purpose, roads were surveyed by vehicle/kinematic GPS. The results show that vehicle/kinematic GPS can measure spatial position faster, and still maintain a reasonable accuracy. But inertial navigation system and GPS should be integrated to compute continuous vehicle track and overcome gaps by blocked satellite signals for the more accurate positioning.

  • PDF

GPS-Assisted Aerotriangulation (GPS를 이용한 항공삼각측량)

  • 김감래;김충평;윤종성
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.3
    • /
    • pp.283-292
    • /
    • 1999
  • Aerotriangulation for the large scale mapping(photo-scale l/5,000) was studied with the projection center determined by kinematic DGPS positioning. For the feasibility study, the accuracy and error was analyzed with the comparison between a projection center from the conventional model adjustment and the projection center determined by the kinematic DGPS positioning. Kinematic DGPS-supported Bundle adjustment was also performed. The accuracy of projection center, determined by L1 phase data observed within 30 km from base station, was stable, and the planimetric accuracy(RMS) is 13 cm and the vertical accuracy(RMS) is 15 cm with 4 ground control points, which satisfies the national standard of digital mapping. Thus, this study shows that GPS-assisted aerotriangulation can be used for economic digital mapping.

  • PDF