실시간 원격 감지 시스템은 많은 감시 상황에서 중요한 가치를 지니고 있다. 실시간 원격 감지 시스템은 누군가가 그의 장소에서 무슨 일이 일어나고 있는지를 알 수 있게 한다. Kinect의 V2는 컴퓨터에게 눈의 역할을 제공하며 컬러와 깊이 이미지, 오디오 입력과 골격 데이터 등 다양한 데이터를 생성 할 수 있는 새로운 유형의 카메라이다. 본 논문에서는 깊이 이미지와 함께 Kinect V2의 센서를 사용하여, Kinect에 의해 덮인 공간에서의 모니터링 시스템을 제공한다. 따라서 Kinect 카메라에 의해 덮인 공간에 기초하여, 최소 및 최대 거리를 설정함으로써, 깊이의 범위를 이용하여 감시하는 대상 지역을 정의한다. 대상 공간에서 추적 개체가 있는 경우, 컴퓨터 비전 라이브러리(Emgu CV)에서 Kinect 카메라는 이미지 전체의 색상을 캡처하고, 이를 데이터베이스로 전송함으로써 인터넷이 있으면 어디서나 사용자가 자신의 모바일 장치를 통해 접속할 수 있다.
The balance ability significantly decreased in the elderly because of deterioration of the neural musculature regulatory mechanisms. Several studies have investigated methods of improving balance ability using real-time systems, but it is limited by the expensive test equipment and specialized resources. Recently, Kinect system based on depth data has been applied to address these limitations. Little information about accuracy/inaccuracy of Kinect system is, however, available, particular in motion analysis for evaluation of effectiveness in rehabilitation training. Therefore, the aim of the current study was to evaluate accuracy/inaccuracy of Kinect system in specific rotational movement for balance rehabilitation training. Six healthy male adults with no musculoskeletal disorder were selected to participate in the experiment. Movements of the participants were induced by controlling the base plane of the balance training equipment in directions of AP (anterior-posterior), ML (medial-lateral), right and left diagonal direction. The dynamic motions of the subjects were measured using two Kinect depth sensor systems and a three-dimensional motion capture system with eight infrared cameras for comparative evaluation. The results of the error rate for hip and knee joint alteration of Kinect system comparison with infrared camera based motion capture system occurred smaller values in the ML direction (Hip joint: 10.9~57.3%, Knee joint: 26.0~74.8%). Therefore, the accuracy of Kinect system for measuring balance rehabilitation traning could improve by using adapted algorithm which is based on hip joint movement in medial-lateral direction.
KINECT는 Microsoft사에서 제작된 동작 인식 카메라이다. KINECT SDK가 널리 사용되고 있으며 이를 이용한 응용 제품 개발이 활발히 진행 중에 있다. 특히 KIET(Kinect Image Extraction Technique) 기법은 입력영상에서 움직임 물체를 추출하는데 사용되고 있다. 하지만, KIET는 빛의 흡수로 인해 추출 영상에서 사람 머리가 잘 추출 되지 않는 문제점을 가지고 있다. 본 논문에서는 KINECT에서 입력 된 컬러영상과 깊이영상을 이용하여 KIET의 문제점을 개선하는 방법을 제안한다. 다양한 실험을 통하여, 본 논문에서 제안한 방법은 기존의 KINECT에서 제공된 영상추출 방법보다 뛰어난 추출 결과를 보인다.
본 논문에서는 Kinect를 이용하여 획득된 영상으로 집적 영상 기반의 3D 디스플레이를 수행하기 위한 요소 영상 변환 방법을 제안한다. Kinect로 얻어지는 RGB영상과 깊이영상은 직접적으로 공간 3D영상으로 사용될 수 없기 때문에 집적영상 디스플레이용 요소 영상으로 변환이 필요하다. 이를 위해서 본 논문에서 RGB 영상과 깊이 영상으로부터 생성된 깊이 분할 영상에 대해서 기하광학적 매핑기법으로 요소 영상을 제작하였다. 제안한 시스템의 효용성을 보이기 위하여, Kinect에서 주로 사용되는 인체인식 기반으로 실험을 수행하고 그 결과를 보고한다.
Facial diagnosis based on quantitative facial features has been studied in many Korean medicine fields, especially in Sasang constitutional medicine. By the rapid growing of 3D measuring technology, generic and cheap 3D sensors, such as Microsoft Kinect, is popular in many research fields. In this study, the possibility of using Kinect in facial diagnosis is examined. We introduce the development of facial feature extraction system and verify its accuracy and repeatability of measurement. Furthermore, we compare Sasang constitution diagnosis results between DSLR-based system and the developed Kinect-based system. A Sasang constitution diagnosis algorithm applied in the experiment was previously developed by a huge database containing 2D facial images acquired by DSLR cameras. Interrater reliability analysis result shows almost perfect agreement (Kappa = 0.818) between the two systems. This means that Kinect can be utilized to the diagnosis algorithm, even though it was originally derived from 2D facial image data. We conclude that Kinect can be successfully applicable to practical facial diagnosis.
본 연구는 Kinect Sensor 기반의 개인 맞춤형 운동 처방 시스템을 개발하고, 개발 시스템의 사용성을 평가하는 것이다. 개발 시스템을 개인 맞춤형 운동 처방 시스템을 모션캡쳐 도구로서 이용할 수 있을지에 대한 가능성 검증을 위해서 스마트 거울 시스템에 부착된 키넥트 센서(Kinect sensor)에서 측정된 인체 움직임 데이터와 적외선 모션캡쳐 장비에서 측정된 인체 움직임 데이터를 비교하여 타당성과 신뢰성을 분석하였다. 타당성 검증 결과 상관계수 r=0.871~0.919로 높은 양의 상관성을 보였고, 예측가능정도가 88%로 높게 나타났다. 신뢰성 검증 결과 r=0.743~0.916 높은 양의 상관성을 보였고, 반복 측정에 대한 일관성도 ICC=0.937로 매우 높게 나타났다. 결론적으로 본 연구에서 개발한 키넥트 센서기반의 운동 처방 시스템에서 인간 골격에 대한 특징 벡터를 통한 관절의 가동범위 평가 및 자세측정평가가 운동 처방을 제공하는데 있어서 하나의 기준이 될 수 있다는 가능성을 보여주었다. 향후 병원, 임상시험센터, 스포츠센터 등의 운동처방사 혹은 물리치료사, 퍼스널 트레이너들에게 전문성 제고에 도움을 줄 수 있을 것으로 사료된다.
최근 카메라, 캠코더 및 CCTV 등의 사용이 활발해지면서 영상 처리 기술의 수요가 급증하고 있다. 특히 키넥트 센서와 같은 깊이(Depth) 카메라를 사용한 3D 영상 기술에 대한 연구개발이 더욱더 활성화되고 있다. 키넥트 센서는 RGB, 골격(Skeleton) 및 깊이(Depth) 영상을 통해 인체의 3D 골격 구조를 실시간 프레임 단위로 획득할 수 있는 고성능 카메라이다. 본 논문에서는 키넥트 센서를 사용하여 인체의 3D 골격 구조를 모션 캡처하고 범용으로 사용되고 있는 모션 파일 포맷($^*.trc$ 및 $^*.bvh$)으로 선택하여 저장할 수 있는 시스템을 개발한다. 또한 본 시스템은 광학식 모션 캡처 파일 포맷($^*.trc$)을 자기식 모션 캡처 파일 포맷($^*.bvh$)으로 변환할 수 있도록 하는 기능을 가진다. 마지막으로 본 논문에서는 키넥트 센서를 사용하여 캡처한 모션 데이터가 제대로 캡처되어졌는지 모션 캡처 데이터 뷰어를 통하여 확인한다.
끊이지 않는 차량 인명피해 사고들로 인해, 그 원인을 분석하고 방지하는 장치 및 기술들이 다양하게 나오고 있다. 그 중에서 대표적으로 블랙박스 및 후방카메라 등이 있다. 이러한 기술이 발전함에도 불구하고 차량 인명사고가 계속 발생하고 있다. 그 이유는 운전자의 부주의나 차량이 후진 시에 사람이 갑자기 차량의 뒤로 지나가거나 기존의 후방 감지시스템이 어린이들을 제대로 감지하지 못하였기 때문이다. 따라서 본 논문은 사고를 방지하기 위한 Kinect를 이용한 후방 카메라와 사고의 원인을 정확하게 밝혀주는 블랙박스를 통합한 후방 블랙박스 시스템을 설계하고자 한다.
Journal of information and communication convergence engineering
/
제17권1호
/
pp.74-83
/
2019
This study designs a squat posture recognition system that can provide correct squat posture guidelines. This system comprises two modules: a Kinect camera for monitoring users' body movements and a Wii Balance Board(WBB) for measuring balanced postures with legs. Squat posture recognition involves two states: "Stand" and "Squat." Further, each state is divided into two postures: correct and incorrect. The incorrect postures of the Stand and Squat states were classified into three and two different types of postures, respectively. The factors that determine whether a posture is incorrect or correct include the difference between shoulder width and ankle width, knee angle, and coordinate of center of pressure(CoP). An expert and 10 participants participated in experiments, and the three factors used to determine the posture were measured using both Kinect and WBB. The acquired data from each device show that the expert's posture is more stable than that of the subjects. This data was classified using a support vector machine (SVM) and $na{\ddot{i}}ve$ Bayes classifier. The classification results showed that the accuracy achieved using the SVM and $na{\ddot{i}}ve$ Bayes classifier was 95.61% and 81.82%, respectively. Therefore, the developed system that used Kinect and WBB could classify correct and incorrect postures with high accuracy. Unlike in other studies, we obtained the spatial coordinates using Kinect and measured the length of the body. The balance of the body was measured using CoP coordinates obtained from the WBB, and meaningful results were obtained from the measured values. Finally, the developed system can help people analyze the squat posture easily and conveniently anywhere and can help present correct squat posture guidelines. By using this system, users can easily analyze the squat posture in daily life and suggest safe and accurate postures.
2차원으로 영상을 처리하다가 다양한 영상처리기법과 도구들이 발달하면서 3차원 영상 네비게이션에 대한 요구가 증대되고 있다. 실세계에서 체험하기 어려운 부분을 가상환경에서 체험하고, 활용하는데 목적을 가진다. 이는 단순한 3D 배경을 제공하는 시스템이 아니라 일상적인 행동으로 시스템을 제어할 수 있는 본능적 인터페이스 기술 개발의 필요를 의미한다. 본 연구의 목적은 인간의 다양한 행동에 대해 키넥트 장비를 이용해 행동에 가장 3차원적으로 근접한 새로운 네비게이션 제어 기술 개발에 있다. 키넥트와 홀로그래피를 이용해 입력된 데이터를 3차원 영상으로 연계성을 가질 수 있도록 시스템을 설계하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.