• 제목/요약/키워드: Kinases

검색결과 926건 처리시간 0.028초

Cyclooxygenase-2 as a Molecular Target for Cancer Chemopreventive Agents

  • Surh, Young-Joon
    • Toxicological Research
    • /
    • 제17권
    • /
    • pp.89-96
    • /
    • 2001
  • Recently, considerable attention has been focused on the role of cyclooxygenase-2 (COX-2) in the carcinogenesis as well as in inflammation. Improperly overexpressed COX-2 has been observed in many types of human cancers and transformed cells in culture. Thus, it is conceivable that targeted inhibition of abnormally or improperly up-regulated COX-2 provides one of the most effective and promising strategies for cancer prevention. A ubiquitous eukaryotic transcription factor, NF-kB is considered to be involved in regulation of COX-2 expression. Furthermore, extracellular-regulated protein kinase and p38 mitogen-activated protein (MAP) kinase appear to be key elements of the intracellular signaling cascades involved in NF-kB activation in response to a wide array of external stimuli. Certain chemopreventive phytochemicals suppress activation of NF-kB by blocking one or more of the MAP kinases, which may contribute to their inhibitory effects on COX-2 induction. One of the plausible mechanisms by which chemopreventive phytochemicals inhibit NF-kB activation involves suppression of degradation of the inhibitory unit I kB, which hampers subsequent translocation of p65, the functionally active subunit of NF-kB.

  • PDF

Analysis of a Sphingosine 1-phosphate Receptor $hS1P_3$ in Rat Hepatoma Cells

  • Im, Dong-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권3호
    • /
    • pp.139-142
    • /
    • 2002
  • To examine intracellular signaling of human $S1P_3\;(hS1P_3),$ a sphingosine 1-phosphate (S1P) receptor in plasma membrane, $hS1P_3$ DNA was transfected into RH7777 rat hepatoma cell line, and the inhibition of forskolin-induced cAMP accumulation and activation of MAP kinases by S1P were tested. In $hS1P_3$ transformants, S1P inhibited forskolin-induced activation of adenylyl cyclase activity by about 80% and activated MAP kinases in dose-dependent and pertussis-toxin (PTX) sensitive manners. In oocytes expressing $hS1P_3$ receptor, S1P evoked $Cl^-$ conductance. These data suggested that PTX-sensitive G proteins are involved in $hS1P_3-mediated$ signaling, especially the positive action of S1P in cell proliferation. The potential advantages of rat hepatoma cells for the research of sphingosine 1-phosphate receptor are discussed.

Apoptotic Signaling Pathways: Caspases and Stress-Activated Protein Kinases

  • Cho, Ssang-Goo;Choi, Eui-Ju
    • BMB Reports
    • /
    • 제35권1호
    • /
    • pp.24-27
    • /
    • 2002
  • Apoptotic cell death is an active process mediated by various signaling pathways, which include the caspase cascade and the stress-activated protein kinase pathways. The caspase cascade is activated by two distinct routes: one from cell surface and the other from mitochondria. Activation of the route from cell surface requires the cellular components that include membrane receptors, adaptor proteins such as TRADD and FADD, and caspase-8, while activation of the other from mitochondria requires Apaf-1, caspase-9, and cytosolic cytochrome c. On the other hand, persistent stimulation of the stress-activated protein kinase pathway is also shown to mediate apoptosis in many cell types. Gene-targeting studies with jnk- or jip-null mice, in particular, strongly suggest that this signaling pathway plays a pivotal role in the cellular machinery for apoptosis.

Involvement of protein tyrosine phosphatases in adipogenesis: New anti-obesity targets?

  • Bae, Kwang-Hee;Kim, Won Kon;Lee, Sang Chul
    • BMB Reports
    • /
    • 제45권12호
    • /
    • pp.700-706
    • /
    • 2012
  • Obesity is a worldwide epidemic as well as being a major risk factor for diabetes, cardiovascular diseases and several types of cancers. Obesity is mainly due to the overgrowth of adipose tissue arising from an imbalance between energy intake and energy expenditure. Adipose tissue, primarily composed of adipocytes, plays a key role in maintaining whole body energy homeostasis. In view of the treatment of obesity and obesity-related diseases, it is critical to understand the detailed signal transduction mechanisms of adipogenic differentiation. Adipogenic differentiation is tightly regulated by many key signal cascades, including insulin signaling. These signal cascades generally transfer or amplify the signal by using serial tyrosine phosphorylations. Thus, protein tyrosine kinases and protein tyrosine phosphatases are closely related to adipogenic differentiation. Compared to protein tyrosine kinases, protein tyrosine phosphatases have received little attention in adipogenic differentiation. This review aims to highlight the involvement of protein tyrosine phosphatases in adipogenic differentiation and the possibility of protein tyrosine phosphatases as drugs to target obesity.

c-Jun N-Terminal Kinase Signaling Inhibitors Under Development

  • Han, Sun-Young
    • Toxicological Research
    • /
    • 제24권2호
    • /
    • pp.93-100
    • /
    • 2008
  • Targeting protein kinases has been active area in drug discovery. The c-Jun N-terminal kinases(JNKs) have also been target for development of novel therapy in various diseases, since the roles of JNK signaling in pathological conditions were revealed in studies using jnk-deficient mice. Small molecule inhibitors and peptide inhibitors are identified for therapeutic intervention of JNK signaling pathway. SP-600125, an anthrapyrazole small molecule inhibitor for JNK with high potency and selectivity has been widely used for dissecting JNK signaling pathway. CC-401 is the first JNK inhibitor that went into clinical trial for inflammation and leukemia. Inhibitor for mixed lineage kinase (MLK), CEP-1347 also negatively regulates JNK signaling, and tried for potential use in Parkinson's disease. Cell-permeable peptide inhibitor D-JNKI-1 is being developed for the treatment of hearing loss. The current status of these JNK inhibitors and safety issue is discussed in the minireview.

Phosphagen Kinases of Parasites: Unexplored Chemotherapeutic Targets

  • Jarilla, Blanca R.;Agatsuma, Takeshi
    • Parasites, Hosts and Diseases
    • /
    • 제48권4호
    • /
    • pp.281-284
    • /
    • 2010
  • Due to the possible emergence of resistance and safety concerns on certain treatments, development of new drugs against parasites is essential for the effective control and subsequent eradication of parasitic infections. Several drug targets have been identified which are either genes or proteins essential for the parasite survival and distinct from the hosts. These include the phosphagen kinases (PKs) which are enzymes that playa key role in maintenance of homeostasis in cells exhibiting high or variable rates of energy turnover by catalizing the reversible transfer of a phosphate between ATP and naturally occurring guanidine compounds. PKs have been identified in a number of important human and animal parasites and were also shown to be significant in survival and adaptation to stress conditions. The potential of parasite PKs as novel chemotherapeutic targets remains to be explored.

Differential regulation of phospho-p38 and phospho-ERK by TCDD

  • Kim, Ho-jun;Cho, Sung-whan;Son, Hwa-young;Yoon, Won-kee;Jeong, Kyung-shik;Ryu, Si-yun
    • 한국수의병리학회:학술대회논문집
    • /
    • 한국수의병리학회 2003년도 추계학술대회초록집
    • /
    • pp.42-42
    • /
    • 2003
  • The contamination of the environment with pollutants is one of the main problems of modern life, and the levels pollution in industrialized regions are giving raise to increased public concern. The mitogen-activated protein kinase (MAP kinase) are playa pivotal role in the regulation of important cellular functions by activation of specific signal transduction pathways from cell the surface to the nuclei. Three major subgroups of MAP kinases have been identified, and these comprise the extracellular signal-regulated kinase (ERK), the c-Jun amino-terminal kinase (JNK), and the p38 MAP kinases [1-3]. Herein, we investigated the effect of regulation of phospho-JNK (p-JNK), phospho-p38 (p-p38) and phospho-ERK (p-ERK) by TCDD. (omitted)

  • PDF

Mechanism of Growth Hormone Action : Recent Developments - A Review

  • Sodhi, R.;Rajput, Y.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권12호
    • /
    • pp.1785-1793
    • /
    • 2001
  • The interaction of growth hormone with it's receptor results in dimerization of receptor, a feature known in action of certain cytokines. The interaction results in generation of number of signalling molecules. The involvement of Janus kinases, mitogen activated kinases, signal transduction and activator of transcription proteins, insulin like substrate, phosphatidylinositol 3-kinase, phospholipase C, protein kinase C is almost established in growth hormone action. There are still many missing links in explaining diversified activities of growth hormone. Amino acid sequence data for growth hormones and growth hormone receptors from a number of species have proved useful in understanding species specific effects of growth hormone. Complete understanding of growth hormone action can have implications in designing drugs for obtaining desired effects of growth hormone.

The Catalytic Subunit of Protein Kinase A Interacts with Testis-Brain RNA-Binding Protein (TB-RBP)

  • ;길성호
    • 대한의생명과학회지
    • /
    • 제13권4호
    • /
    • pp.305-311
    • /
    • 2007
  • cAMP-dependent protein kinase A (PKA) is the best-characterized protein kinases and has served as a model of the structure and regulation of cAMP-binding protein as well as of protein kinases. To determine the function of PKA in development, we employed the yeast two-hybrid system to screen for catalytic subunit of PKA $(C\alpha)$ interacting partners in a cDNA library from mouse embryo. A Testis-brain RNA-binding protein (TB-RBP), specifically bound to $C\alpha$. This interaction was verified by several biochemical analysis. Our findings indicate that $C\alpha$ can modulate nucleic acid binding proteins of TB-RBP and provide insights into the diverse role of PKA.

  • PDF

NPR1 is Instrumental in Priming for the Enhanced flg22-induced MPK3 and MPK6 Activation

  • Yi, So Young;Min, Sung Ran;Kwon, Suk-Yoon
    • The Plant Pathology Journal
    • /
    • 제31권2호
    • /
    • pp.192-194
    • /
    • 2015
  • Pathogen-associated molecular patterns (PAMPs) activate mitogen-activated protein kinases (MAPKs), essential components of plant defense signaling. Salicylic acid (SA) is also central to plant resistance responses, but its specific role in regulation of MAPK activation is not completely defined. We have investigated the role of SA in PAMP-triggered MAPKs pathways in Arabidopsis SA-related mutants, specifically in the flg22-triggered activation of MPK3 and MPK6. cim6, sid2, and npr1 mutants exhibited wild-type-like flg22-triggered MAPKs activation, suggesting that impairment of SA signaling has no effect on the flg22-triggered MAPKs activation. Pretreatment with low concentrations of SA enhanced flg22-induced MPK3 and MPK6 activation in all seedlings except npr1, indicating that NPR1 is involved in SA-mediated priming that enhanced flg22-induced MAPKs activation.