• Title/Summary/Keyword: Kinase Domain

Search Result 246, Processing Time 0.033 seconds

Pleckstrin homology domain of phospholipase D2 is a negative regulator of focal adhesion kinase

  • Kim, Mi Kyoung;Hwang, Won Chan;Min, Do Sik
    • BMB Reports
    • /
    • v.54 no.2
    • /
    • pp.112-117
    • /
    • 2021
  • Phospholipase D2 (PLD2) has been implicated in the tyrosine kinase-mediated signaling pathways, but the regulation events are yet to be identified. Herein, we demonstrate that pleckstrin homology (PH) domain of PLD2 (PLD2-PH) exerts an antitumorigenic effect via the suppression of PLD2 and focal adhesion kinase (FAK). The kinase domain of FAK interacts with PLD2-PH and induces tyrosine phosphorylation and activation of PLD2. Furthermore, PLD2 increased tyrosine phosphorylation of FAK. However, ectopic expression of the PLD2-PH competes for binding to FAK and reduces the interaction between PLD2 and FAK, thereby suppressing FAK-induced PLD activation and tyrosine phosphorylation of FAK. The PLD2-PH suppressed the migration and invasion of glioblastoma cells, as well as tumor formation in a xenograft mouse model. This study uncovers a novel role of PLD2-PH as a negative regulator of PLD2 and FAK.

PRP4 Kinase Domain Loss Nullifies Drug Resistance and Epithelial-Mesenchymal Transition in Human Colorectal Carcinoma Cells

  • Ahmed, Muhammad Bilal;Islam, Salman Ul;Sonn, Jong Kyung;Lee, Young Sup
    • Molecules and Cells
    • /
    • v.43 no.7
    • /
    • pp.662-670
    • /
    • 2020
  • We have investigated the involvement of the pre-mRNA processing factor 4B (PRP4) kinase domain in mediating drug resistance. HCT116 cells were treated with curcumin, and apoptosis was assessed based on flow cytometry and the generation of reactive oxygen species (ROS). Cells were then transfected with PRP4 or pre-mRNA-processing-splicing factor 8 (PRP8), and drug resistance was analyzed both in vitro and in vivo. Furthermore, we deleted the kinase domain in PRP4 using Gateway™ technology. Curcumin induced cell death through the production of ROS and decreased the activation of survival signals, but PRP4 overexpression reversed the curcumin-induced oxidative stress and apoptosis. PRP8 failed to reverse the curcumin-induced apoptosis in the HCT116 colon cancer cell line. In xenograft mouse model experiments, curcumin effectively reduced tumour size whereas PRP4 conferred resistance to curcumin, which was evident from increasing tumour size, while PRP8 failed to regulate the curcumin action. PRP4 overexpression altered the morphology, rearranged the actin cytoskeleton, triggered epithelial-mesenchymal transition (EMT), and decreased the invasiveness of HCT116 cells. The loss of E-cadherin, a hallmark of EMT, was observed in HCT116 cells overexpressing PRP4. Moreover, we observed that the EMT-inducing potential of PRP4 was aborted after the deletion of its kinase domain. Collectively, our investigations suggest that the PRP4 kinase domain is responsible for promoting drug resistance to curcumin by inducing EMT. Further evaluation of PRP4-induced inhibition of cell death and PRP4 kinase domain interactions with various other proteins might lead to the development of novel approaches for overcoming drug resistance in patients with colon cancer.

ErbB2 kinase domain is required for ErbB2 association with β-catenin (ErbB2의 kinase 영역이 β-catenin과 ErbB2의 결합에 필요하다)

  • Ha, Nam-Chul;Xu, Wanping;Neckers, Len;Jung, Yun-Jin
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.356-361
    • /
    • 2007
  • To investigate the region of ErbB2 for the $ErbB2-{\beta}-catenin$ interaction, a proteasome $resistant-{\beta}-catenin$ and various ErbB2 constructs were transfected in COS7 cells. ErbB2 proteins were immunoprecipitated, and coimmunoprecipitated ${\beta}-catenin$ was examined by Western blotting. ${\beta}-catenin$ coimmunoprecipitated with full length ErbB2. Of the truncated ErbB2 proteins DT (1-1123), DHC (1-1031) and DK (1-750), the ErbB2 constructs containing the kinase domain, DT and DHC, precipitated together with ${\beta}-catenin$ but DK containing no kinase domain did not. To further test the requirement of the kinase domain for ${\beta}-catenin-ErbB2$ interaction, the presence of ${\beta}-catenin$ in the immunocomplex was examined following transfection with an ErbB2 mutant (${\triangle}750-971$) whose kinase domain is internally deleted and subsequent immunoprecipitation of the ErbB2 mutant. ${\beta}-catenin$ was not detected in the immunocomplex. These results suggest that the ErbB2 kinase domain comprises a potential site for ${\beta}-catenin$ binding to the receptor tyrosine kinase.

Synthesis and evaluation of inhibitors for Polo-box domain of Polo-like kinase 1

  • Eun Kyoung Ryu
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.139-145
    • /
    • 2020
  • Polo-like kinase 1 (Plk1) is a key protein in mitosis and has been validated as a target for tumor therapy. It is well known to highly overexpress in many kinds of tumor, which has been implicated as a potential biomarker for tumor treatment and diagnosis. Plk1 consists of two domains, the N-terminus kinase domain and the C-terminus polo-box domain (PBD). The inhibitors have been developed for PBD of Plk1, which were shown a high level of affinity and selectivity for Plk1 that led to mitotic arrest and apoptotic cell death. This review discusses the inhibitors for PBD of Plk1 that are suitable for in vivo tumor treatment. They can be further extended for developing in vivo imaging probes for early diagnosis of tumor.

Catalytic and Structural Properties of Pyridoxal Kinase

  • Cho, Jung-Jong;Kim, Se-Kwon;Kim, Young-Tae
    • BMB Reports
    • /
    • v.30 no.2
    • /
    • pp.125-131
    • /
    • 1997
  • This work reports studies of the catalytic and structural properties of pyridoxal kinase (ATP: pyridoxal 5' -phosphotransferase, EC. 2.7.1.35), Pyridoxal kinase catalyzes the phosphorylation of vitamin $B_6$ (pyridoxal, pyridoxamine, pyridoxine) using ATP-Zn as a phosphoryl donor. The enzyme purified from brain tissues is made up of two identical subunits of 40 kDa each. Native enzyme was inhibited by a substrate analogue, pyridoxal-oxime. Limited chymotrypsin digestion of pyridoxal kinase yields two fragments of 24 and 16 kDa with concomitant loss of catalytic activity. These fragments were isolated by DEAE ion exchange chromatography and used for binding studies with fluorescent ATP and pyridoxal analogues. The spectroscopic properties of both fluorescent pyridoxal analogue and Anthraniloyl ATP (Ant-ATP) bound to the 24 kDa fragment are indistinguishable from those of both pyridoxal analogue and Ant-ATP bound to the native pyridoxal kinase, respectively. The small 16 kDa fragment, generated by proteolytic cleavage of the kinase, does not bind any of the substrate analogues. Binding characteristics of Ant-ATP were extensively studied by measuring the changes in fluorescence spectra at various conditions. From the results presented herein, it is postulated that the structural domain associated with catalytic activity comprises approximately one-half of the molecular mass of pyridoxal kinase (24 kDa). whereas the remaining portion (16 kDa) of the enzyme contains a regulatory binding domain.

  • PDF

Molecular Cloning and NMR Characterization of the Nonreceptor Tyrosine Kinase PTK6 SH3-SH2-Linker Domain

  • Lee, Young-Min;Ahn, Kyo-Eun;Ko, Sung-Geon;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1043-1046
    • /
    • 2009
  • Human protein tyrosine kinase-6 (PTK6) is a member of the non-receptor protein tyrosine kinase family and it is found in two-thirds of all breast tumors. Very recently, we proposed that the SH3 domain of PTK6 interacts with the linker region (Linker) between the SH2 and kinase domains, proving that the interaction between SH3 domain and Linker plays an important role in auto-inhibition mechanism. Residues from 1 to 191 corresponding region of SH3-SH2-Linker (SH32L) of PTK6 was cloned into the pET32a expression vector with Tobbaco etch virus (TEV) protease enzyme site by sequence homology and 3D structural model. The purified PTK6-SH32L was determined as a monomer conformation in solution. The amide proton resonances in the $^{15}N-^{1}H$ 2D-HSQC spectrum suggest that PTK6-SH32L possesses disordered structural region of the flexible/unstructured linker region. In addition, the backbone amide proton chemical shifts of the SH3 domain in the PTK6-SH32L differ from that of the independent domain, indicating that intra-molecular interaction between SH3 and Linker in the PTK6-SH32L is present.

Inactivation of the DevS Histidine Kinase of Mycobacterium smegmatis by the Formation of the Intersubunit Disulfide Bond (Subunit 간의 disulfide 결합 형성에 의한 Mycobacterium smegmatis DevS histidine kinase의 불활성화)

  • Lee, Jin-Mok;Park, Kwang-Jin;Kim, Min-Ju;Ko, In-Jeong;Oh, Jeong-Il
    • Journal of Life Science
    • /
    • v.20 no.6
    • /
    • pp.853-860
    • /
    • 2010
  • The DevSR two-component system is a major regulatory system involved in redox sensing in Mycobacterium smegmatis. The DevSR system consists of the DevS histidine kinase and its cognate DevR response regulator. When exposed to hypoxic conditions, the DevS histidine kinase is activated to phosphorylate the DevR response regulator, leading to the transcriptional activation of the DevR regulation. The ligand-binding state of the heme embedded in the N-terminal GAF domain of DevS determines the kinase activity of DevS. In this study, we demonstrated that the redox-responsive cysteine (C547) in the C-terminal kinase domain is involved in the redox-dependent control of DevS kinase activity. The formation of an intersubunit disulfide bond between the C547 residues in the presence of $O_2$ led to inactivation of DevS kinase activity. The reduction of the oxidized DevS with reductants such as $\beta$-mercaptoethanol and dithiothreitol resulted in the restoration of DevS kinase activity. It was demonstrated in vivo by complementation test that the substitution of C547 to alanine partially impaired the sensory function of DevS in M. smegmatis.

Purification and Spectroscopic Characterization of the Human Protein Tyrosine Kinase-6 SH3 Domain

  • Koo, Bon-Kyung;Kim, Min-Hyung;Lee, Seung-Taek;Lee, Weon-Tae
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.343-347
    • /
    • 2002
  • The human protein tyrosine kinase-6 (PTK6) polypeptide that is deduced from the cDNA sequence contains a Src homology (SH) 3 domain, SH2 domain, and catalytic domain of tyrosine kinase. We initiated biochemical and NMR characterization of PTK6 SH3 domain in order to correlate the structural role of the PTK6 using circular dichroism and heteronuclear NMR techniques. The circular dichroism data suggested that the secondary structural elements of the SH3 domain are mainly composed of $\beta$-sheet conformations. It is most stable when the pH is neutral based on the pH titration data. In addition, a number of cross peaks at the low-field area of the proton chemical shift of the NMR spectra indicated that the PTK6 SH3 domain retains a unique and folded conformation at the neutral pH condition. For other pH conditions, the SH3 domain became unstable and aggregated during NMR measurements, indicating that the structural stability is very sensitive to pH environments. Both the NMR and circular dichroism data indicate that the PTK6 SH3 domain experiences a conformational instability, even in an aqueous solution.

Purification and Characterization of the Functional Catalytic Domain of PKR-Like Endoplasmic Reticulum Kinase Expressed in Escherichia coli

  • Yun Jin-A;Chung Ho-Young;Kim Seong-Jun;Cho Hyun-Soo;Oh Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1453-1458
    • /
    • 2006
  • PKR-like endoplasmic reticulum (ER) kinase (PERK) is a type I transmembrane ER-resident protein containing a cytoplasmic catalytic domain with a Ser/Thr kinase activity, which is most closely related to the eukaryotic translation initiation factor-$2{\alpha}$ ($eIF2{\alpha}$) kinase PKR involved in the antiviral defense pathway by interferon. We cloned and expressed the PERK C-terminal kinase domain (cPERK) in Escherichia coli. Like PERK activation in cells under ER stress, wild-type cPERK underwent autophosphorylation when overexpressed in E. coli, whereas the cPERK(K621M) with a methionine substitution for the lysine at amino acid 621 lost the autophosphorylation activity. The activated form cPERK which was purified to near homogeneity, formed an oligomer and was able to trans-phosphorylate specifically its cellular substrate $eIF2{\alpha}$. Two-dimensional phosphoamino acids analysis revealed that phosphorylation of cPERK occurs at the Ser and Thr residues. The functionally active recombinant cPERK, and its inactive mutant should be useful for the analysis of biochemical functions of PERK and for the determination of their three-dimensional structures.

Mutations in the tyrosine kinase domain of the EGFR gene are rare in the Korean Oral Squamous Cell Carcinoma

  • Lee, Eun-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.9
    • /
    • pp.101-106
    • /
    • 2016
  • The epidermal growth factor receptor(EGFR) protein kinase signaling is an important pathway in cancer development and recently reported that EGFR and its kinase domain molecules are mutated in various of cancers including head and neck cancer. Functional deregulation of EGFR due to mutations in coding exons and copy number amplification is the most common event in cancers, especially among receptor tyrosine kinases(TK). We have analyzed Korean oral squamous cell carcinomas (OSCC) cell lines for mutations in EGFRTK. Exons encoding the hot-spot regions in the TK domain of EGFR (exons 17 to 23) were amplified by using polymerase chain reaction(PCR) and sequenced directly. EGFR expression was also analyzed in 8 OSCC cell lines using western blotting. Data analysis of the EGFR exons 17 to 23 coding sequences did not show any mutations in the 8 OSCC cell lines that were analyzed. The absence of mutations indicate that protein overexpression might be responsible for activation rather than mutation.