• Title/Summary/Keyword: Kim's model

Search Result 15,609, Processing Time 0.046 seconds

Effect of Decreased Locomotor Activity on Hindlimb Muscles in a Rat Model of Parkinson's Disease (파킨슨병 모델 쥐에서 보행활동저하가 뒷다리근에 미치는 영향)

  • Kim, Yong-Bum;Choe, Myoung-Ae
    • Journal of Korean Academy of Nursing
    • /
    • v.40 no.4
    • /
    • pp.580-588
    • /
    • 2010
  • Purpose: The purpose of this study was to examine effects of decreased locomotor activity on mass, Type I and II fiber cross-sectional areas of ipsilateral and contralateral hindlimb muscles 21 days after establishing the Parkinson's disease rat model. Methods: The rat model was established by direct injection of 6-hydroxydopamine (6-OHDA, 50 ${mu}g$) into the left substantia nigra after stereotaxic surgery. Adult male Sprague-Dawley rats were assigned to one of two groups; the Parkinson's disease group (PD; n=17) and a sham group (S; n=8). Locomotor activity was assessed before and 21 days after the experiment. At 22 days after establishing the rat model, all rats were anesthetized and soleus and plantaris muscles were dissected from both ipsilateral and contralateral sides. The brain was dissected to identify dopaminergic neuronal death of substantia nigra in the PD group. Results: The PD group at 21 days after establishing the Parkinson's disease rat model showed significant decrease in locomotor activity compared with the S group. Weights and Type I and II fiber cross-sectional areas of the contralateral soleus muscle of the PD group were significantly lower than those of the S group. Conclusion: Contralateral soleus muscle atrophy occurs 21 days after establishing the Parkinson's disease rat model.

A Study on the Development the Maritime Safety Assessment Model in Korea Waterway

  • Park, Young-Soo;Kim, Jong-Sung;Aydogdu, Volkan
    • Journal of Navigation and Port Research
    • /
    • v.37 no.6
    • /
    • pp.567-574
    • /
    • 2013
  • Although Korea coastal area has the increasing potential marine accident due to frequent ship's encounter, increased vessel traffic and large vessel, there is no specific model to evaluate the navigating vessel's risk considering the domestic traffic situation. The maritime transport environmental assessment is necessary due to the amended maritime traffic law. However, marine safety diagnosis is now carried out by foreign model. In this paper, therefore, we suggest a domestic traffic model reflecting the characteristics of korea coastal area and navigator's risk as we named PARK(Potential Assessment of Risk) model. We can evaluate the subjective risk by establishing the model and model output into maritime risk exposure system. To evaluate this model's effectiveness, we used ship handling simulation and applied, analyzed collision accident which occurred in korea coastal area. And also, we applied integrated to an ECDIS program for monitoring traffic risk of vessels with real time based AIS data and apply to evaluate traffic risk in busan harbor waterway. As a result, we could evaluate busan harbor waterway risk effectively.

Spring-back Prediction of DP980 Steel Sheet Using a Yield Function with a Hardening Model (항복함수 및 경화모델에 따른 DP980 강판의 스프링백 예측)

  • Kim, J.H.;Kang, G.S.;Lee, H.S.;Kim, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.3
    • /
    • pp.189-194
    • /
    • 2016
  • In the current study, spring-back of DP980 steel sheet was numerically evaluated for U-bending using a yield function with a hardening model. For spring-back prediction, two types of yield functions - Hill'48 and Yld2000-2d - were considered. Additionally, isotropic hardening and the Yoshida-Uemori model were used to investigate the spring-back behavior. The parameters for each model were obtained from uniaxial tension, uniaxial tension-compression, uniaxial tension-unloading and hydraulic bulging tests. The numerical simulations were performed using the commercial software, PAM-STAMP 2G. The results were compared with experimental data from a U-bending process.

Design of Robust Linear Multivariable Optimal Model Following Servo System Incorporating Feedforward Compensator (피이드포워드 보상기를 갖는 강인한 선형 다변수 최적 모델 추종 서보계의 구성에 관한 연구)

  • Hwang, C.S.;Kim, C.T;Kim, D.W.;Kim, M.S.;Lee, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.338-340
    • /
    • 1993
  • In this paper, the method for designing a robust linear multivariable model following servo system is proposed. This model following servo system for the (n)th order reference input and the (n)th order disturbance is treated, and is designed so that the (n)th order response of the plant should be kept close to the (n)th order response of the given model by LQ(Linear Quadratic) optimal regulator approach. It is proved that the characteristics of the model following servo system is robust in the presence of the disturbances and the parameter perturbations of the plant dynamics.

  • PDF

Decision-Tree-Based Markov Model for Phrase Break Prediction

  • Kim, Sang-Hun;Oh, Seung-Shin
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.527-529
    • /
    • 2007
  • In this paper, a decision-tree-based Markov model for phrase break prediction is proposed. The model takes advantage of the non-homogeneous-features-based classification ability of decision tree and temporal break sequence modeling based on the Markov process. For this experiment, a text corpus tagged with parts-of-speech and three break strength levels is prepared and evaluated. The complex feature set, textual conditions, and prior knowledge are utilized; and chunking rules are applied to the search results. The proposed model shows an error reduction rate of about 11.6% compared to the conventional classification model.

  • PDF

T-S Fuzzy Model-based Waypoints-Tracking Control of Underwater Vehicles (무인잠수정의 T-S 퍼지 모델기반 경로점 유도제어)

  • Kim, Do-Wan;Lee, Ho-Jae;Sur, Joo-No
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.526-530
    • /
    • 2011
  • This paper presents a new fuzzy model-based design approach for waypoints-tracking control of nonlinear underwater vehicles (UUVs) on a horizontal plane. The waypoints-tracking control problem is converted into the stabilization one for the error model between the given nonlinear UUV and the waypoints. By using the sector nonlinearity, the error model is modeled in Takagi-Sugeno's form. We then derive stabilization conditions for the error model in the format of linear matrix inequality. A numerical simulation is provided to illustrate the effectiveness of the proposed methodology.

Mathematical Models to Describe the Kinetic Behavior of Staphylococcus aureus in Jerky

  • Ha, Jimyeong;Lee, Jeeyeon;Lee, Soomin;Kim, Sejeong;Choi, Yukyung;Oh, Hyemin;Kim, Yujin;Lee, Yewon;Seo, Yeongeun;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.39 no.3
    • /
    • pp.371-378
    • /
    • 2019
  • The objective of this study was to develop mathematical models for describing the kinetic behavior of Staphylococcus aureus (S. aureus) in seasoned beef jerky. Seasoned beef jerky was cut into 10-g pieces. Next, 0.1 mL of S. aureus ATCC13565 was inoculated into the samples to obtain 3 Log CFU/g, and the samples were stored aerobically at $10^{\circ}C$, $20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$, and $35^{\circ}C$ for 600 h. S. aureus cell counts were enumerated on Baird Parker agar during storage. To develop a primary model, the Weibull model was fitted to the cell count data to calculate Delta (required time for the first decimal reduction) and ${\rho}$ (shape of curves). For secondary modeling, a polynomial model was fitted to the Delta values as a function of storage temperature. To evaluate the accuracy of the model prediction, the root mean square error (RMSE) was calculated by comparing the predicted data with the observed data. The surviving S. aureus cell counts were decreased at all storage temperatures. The Delta values were longer at $10^{\circ}C$, $20^{\circ}C$, and $25^{\circ}C$ than at $30^{\circ}C$ and $35^{\circ}C$. The secondary model well-described the temperature effect on Delta with an $R^2$ value of 0.920. In validation analysis, RMSE values of 0.325 suggested that the model performance was appropriate. S. aureus in beef jerky survives for a long period at low storage temperatures and that the model developed in this study is useful for describing the kinetic behavior of S. aureus in seasoned beef jerky.

Investment Performance of Markowitz's Portfolio Selection Model over the Accuracy of the Input Parameters in the Korean Stock Market (한국 주식시장에서 마코위츠 포트폴리오 선정 모형의 입력 변수의 정확도에 따른 투자 성과 연구)

  • Kim, Hongseon;Jung, Jongbin;Kim, Seongmoon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.38 no.4
    • /
    • pp.35-52
    • /
    • 2013
  • Markowitz's portfolio selection model is used to construct an optimal portfolio which has minimum variance, while satisfying a minimum required expected return. The model uses estimators based on analysis of historical data to estimate the returns, standard deviations, and correlation coefficients of individual stocks being considered for investment. However, due to the inaccuracies involved in estimations, the true optimality of a portfolio constructed using the model is questionable. To investigate the effect of estimation inaccuracy on actual portfolio performance, we study the changes in a portfolio's realized return and standard deviation as the accuracy of the estimations for each stock's return, standard deviation, and correlation coefficient is increased. Furthermore, we empirically analyze the portfolio's performance by comparing it with the performance of active mutual funds that are being traded in the Korean stock market and the KOSPI benchmark index, in terms of portfolio returns, standard deviations of returns, and Sharpe ratios. Our results suggest that, among the three input parameters, the accuracy of the estimated returns of individual stocks has the largest effect on performance, while the accuracy of the estimates of the standard deviation of each stock's returns and the correlation coefficient between different stocks have smaller effects. In addition, it is shown that even a small increase in the accuracy of the estimated return of individual stocks improves the portfolio's performance substantially, suggesting that Markowitz's model can be more effectively applied in real-life investments with just an incremental effort to increase estimation accuracy.

According to the Wavelength, the Analysis of Individual Eye Model's Aberration Change (파장에 따른 개별모형안의 수차변화 분석)

  • Kim, Se-Jin;Lim, Hyeon-Seon;Kim, Bong-Hwan;Kouh, Jeong-Hwi
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.3
    • /
    • pp.61-64
    • /
    • 2008
  • Purpose: The analysis of individual eye model designed from clinical demonstration about emmetropia shows that the aberration would be changed by the wave change. Method: The model on the basis of clinical demonstration of eye ball is designed in a form of having 4 refraction surfaces and a constant refractive index. We analyzed designed twelve individual eye model into aberrations changes, as giving changes Fraunhofer lines's six wavelengths. Result: About individual eye model, change in the wavelength of the wavefront aberrations analysis using the Zernike coefficient. This data indicate that the shorter wave is, the more defocus increases and the deviation value of spherical aberration and RMS are widened. Conclusion: As quantity of defocus according to result wavelength change is shorter and shorter, inclination which is similar twelve individual eye model is bigger and bigger and individual eye model majority of cases, little change, and change is shown in part individual eye model is a significant performance degradation can be raised.

  • PDF

Development and evaluation of estimation model of ankle joint moment from optimization of muscle parameters (근육 파라미터 최적화를 통한 발목관절 모멘트 추정 모델 개발 및 평가)

  • Son, J.;Hwang, S.;Lee, J.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.4
    • /
    • pp.310-315
    • /
    • 2010
  • Estimation of muscle forces is important in biomechanics, therefore many researchers have tried to build a muscle model. Recently, optimization techniques for adjusting muscle parameters, i.e. EMG-driven model, have been used to estimate muscle forces and predict joint moments. In this study, an EMG-driven model based on the previous studies has been developed and isometric and isokinetic contraction movements were evaluated to validate the developed model. One healthy male participated in this study. The dynamometer tasks were performed for maximum voluntary isometric contractions (MVIC) for ankle dorsi/plantarflexors, isokinetic contraction at both $30^{\circ}/s$ and $60^{\circ}/s$. EMGs were recorded from the tibialis anterior, gastrocnemius medialis, gastrocnemius lateralis and soleus muscles at the sampling rate of 1000 Hz. The MVIC trial was used to customize the EMG-driven model to the specific subject. Once the subject's own model was developed, the model was used to predict the ankle joint moment for the other two dynamic movements. When no optimization was applied to characterize the muscle parameters, weak correlations were observed between the model prediction and the measured joint moment with large RMS error over 100% (r = 0.468 (123%) and r = 0.060 (159%) in $30^{\circ}/s$ and $60^{\circ}/s$ dynamic movements, respectively). However, once optimization was applied to adjust the muscle parameters, the predicted joint moment was highly similar to the measured joint moment with relatively small RMS error below 40% (r = 0.955 (21%) and r = 0.819 (36%) and in $30^{\circ}/s$ and $60^{\circ}/s$ dynamic movements, respectively). We expect that our EMG-driven model will be employed in our future efforts to estimate muscle forces of the elderly.