• 제목/요약/키워드: Keyword-based

검색결과 1,126건 처리시간 0.034초

다중빈도 키워드 가시화에 관한 연구 (A Study on Multi-frequency Keyword Visualization based on Co-occurrence)

  • 이현창;신성윤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.103-104
    • /
    • 2018
  • Recently, interest in data analysis has increased as the importance of big data becomes more important. Particularly, as social media data and academic research communities become more active and important, analysis becomes more important. In this study, co-word analysis was conducted through altmetrics articles collected from 2012 to 2017. In this way, the co-occurrence network map is derived from the keyword and the emphasized keyword is extracted.

  • PDF

다중빈도 키워드 가시화에 관한 연구 (A Study on Multi-frequency Keyword Visualization based on Co-occurrence)

  • 이현창;신성윤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.424-425
    • /
    • 2018
  • Recently, interest in data analysis has increased as the importance of big data becomes more important. Particularly, as social media data and academic research communities become more active and important, analysis becomes more important. In this study, co-word analysis was conducted through altmetrics articles collected from 2012 to 2017. In this way, the co-occurrence network map is derived from the keyword and the emphasized keyword is extracted.

  • PDF

출현회수에 따른 키워드 가시화 연구 (Keyword Visualization based on the number of occurrences)

  • 이현창;신성윤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.484-485
    • /
    • 2019
  • Recently, interest in data analysis has increased as the importance of big data becomes more important. Particularly, as social media data and academic research communities become more active and important, analysis becomes more important. In this study, co-word analysis was conducted through altmetrics articles collected from 2012 to 2017. In this way, the co-occurrence network map is derived from the keyword and the emphasized keyword is extracted.

  • PDF

키워드 빈도수에 따른 시각화 연구 (Keyword Visualization based on the Number of Occurrences)

  • 이현창;신성윤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.565-566
    • /
    • 2021
  • Recently, interest in data analysis has increased as the importance of big data becomes more important. Particularly, as social media data and academic research communities become more active and important, analysis becomes more important. In this study, co-word analysis was conducted through altmetrics articles collected from 2012 to 2017. In this way, the co-occurrence network map is derived from the keyword and the emphasized keyword is extracted.

  • PDF

감정 기반 키워드 속성값 산출에 따른 글꼴 추천 서비스 (Font Recommendation Service Based on Emotion Keyword Attribute Value Estimation)

  • 지영서;임순범
    • 한국멀티미디어학회논문지
    • /
    • 제25권8호
    • /
    • pp.999-1006
    • /
    • 2022
  • The use of appropriate fonts is not only an aesthetic point of view, but also a factor influencing the reinforcement of meaning. However, it is a difficult process and wastes a lot of time for general users to choose a font that suits their needs and emotions. Therefore, in this study, keywords and fonts to be used in the experiment were selected for emotion-based font recommendation, and keyword values for each font were calculated through an experiment to check the correlation between keywords and fonts. Using the experimental results, a prototype of a keyword-based font recommendation system was designed and the possibility of the system was tested. As a result of the usability evaluation of the font recommendation system prototype, it received a positive evaluation compared to the existing font search system, but the number of fonts was limited and users had difficulties in the process of associating keywords suitable for their desired situation. Therefore, we plan to expand the number of fonts and conduct follow-up research to automatically recommend fonts suitable for the user's situation without selecting keywords.

Fuzzy Keyword Search Method over Ciphertexts supporting Access Control

  • Mei, Zhuolin;Wu, Bin;Tian, Shengli;Ruan, Yonghui;Cui, Zongmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권11호
    • /
    • pp.5671-5693
    • /
    • 2017
  • With the rapid development of cloud computing, more and more data owners are motivated to outsource their data to cloud for various benefits. Due to serious privacy concerns, sensitive data should be encrypted before being outsourced to the cloud. However, this results that effective data utilization becomes a very challenging task, such as keyword search over ciphertexts. Although many searchable encryption methods have been proposed, they only support exact keyword search. Thus, misspelled keywords in the query will result in wrong or no matching. Very recently, a few methods extends the search capability to fuzzy keyword search. Some of them may result in inaccurate search results. The other methods need very large indexes which inevitably lead to low search efficiency. Additionally, the above fuzzy keyword search methods do not support access control. In our paper, we propose a searchable encryption method which achieves fuzzy search and access control through algorithm design and Ciphertext-Policy Attribute-based Encryption (CP-ABE). In our method, the index is small and the search results are accurate. We present word pattern which can be used to balance the search efficiency and privacy. Finally, we conduct extensive experiments and analyze the security of the proposed method.

키워드기반 특허 네트워크 진화에 따른 동종성 분석 (Analysis of Assortativity in the Keyword-based Patent Network Evolution)

  • 최진호;김정욱
    • 인터넷정보학회논문지
    • /
    • 제14권6호
    • /
    • pp.107-115
    • /
    • 2013
  • 우리가 살고 있는 세계에는 다양한 네트워크들이 발견된다. 특히, 기술 및 학문과 밀접하게 관련 있는 지식 네트워크는 지식이 생산되는 방식을 이해하는데 도움을 주기 때문에 큰 의미를 갖는다. 이러한 중요성을 바탕으로 지금까지 지식 네트워크를 대상으로 한 많은 네트워크 분석들이 이루어져 오고 있다. 그 중에서 동종성 계수는 네트워크 내의 노드들이 비슷한 성향을 가진 노드들과 연결을 맺으려는 경향 수치로 나타낸다. 동종성 계수가 가지는 이러한 특성은 지식 네트워크로 간주 될 수 있는 키워드기반 특허 네트워크에서 기술이 어떻게 진화하는지 확인 하는데 도움을 줄 수 있다. 왜냐하면 지식 내트워크내 노드로 표현되는 키워드들 간의 관계들이 기술이 만들어지는 구조를 나타내기 때문이다. 본 연구에서는 키워드 네트워크에는 핵심 노드가 존재한다는 기존 연구 결과를 기반으로 두 가지 가설을 세우고 이에 대한 검증으로 동종성 분석을 수행 하였다. 첫 번째 가설은 키워드 기반 특허 네트워크는 시간 흐름에 따라 비동종성을 띌 것으로 예측 하며, 동종성 분석을 통해 특허 네트워크가 진화함에 따라 비동종성을 보이는 것을 확인 하였다. 다음으로, 키워드 기반 특허 네트워크가 비동종성을 보일수록 클러스터링 계수 또한 낮아 질 것으로 예측하는 두 번째 가설에 대한 동종성 분석 결과, 네트워크의 동종성 계수가 낮아질수록 클러스터링 계수 또한 낮아진다는 사실을 확인 할 수 있었다. 또한, 두 번째 가설의 검증과정에서 확인 한 흥미로웠던 결과로써, 동종성 계수가 감소함에 따라 클러스터링 계수가 낮아지는 정도는 네트워크가 동종성을 보일 때 보다 비동종성을 보일 때가 훨씬 높았다.

CSR·CSV·ESG 연구 동향 분석 - 빅데이터 분석을 중심으로 - (Analysis of CSR·CSV·ESG Research Trends - Based on Big Data Analysis -)

  • 이은지;문재영
    • 품질경영학회지
    • /
    • 제50권4호
    • /
    • pp.751-776
    • /
    • 2022
  • Purpose: The purpose of this paper is to present implications by analyzing research trends on CSR, CSV and ESG by text analysis and visual analysis(Comprehensive/ Fields / Years-based) which are big data analyses, by collecting data based on previous studies on CSR, CSV and ESG. Methods: For the collection of analysis data, deep learning was used in the integrated search on the Academic Research Information Service (www.riss.kr) to search for "CSR", "CSV" and "ESG" as search terms, and the Korean abstracts and keyword were scrapped out of the extracted paper and they are organize into EXCEL. For the final step, CSR 2,847 papers, CSV 395 papers, ESG 555 papers derived were analyzed using the Rx64 4.0.2 program and Rstudio using text mining, one of the big data analysis techniques, and Word Cloud for visualization. Results: The results of this study are as follows; CSR, CSV, and ESG studies showed that research slowed down somewhat before 2010, but research increased rapidly until recently in 2019. Research have been found to be heavily researched in the fields of social science, art and physical education, and engineering. As a result of the study, there were many keyword of 'corporate', 'social', and 'responsibility', which were similar in the word cloud analysis. Looking at the frequent keyword and word cloud analysis by field and year, overall keyword were derived similar to all keyword by year. However, some differences appeared in each field. Conclusion: Government support and expert support for CSR, CSV and ESG should be activated, and researches on technology-based strategies are needed. In the future, it is necessary to take various approaches to them. If researches are conducted in consideration of the environment or energy, it is judged that bigger implications can be presented.

강인한 핵심어 인식을 위해 유용한 주파수 대역을 이용한 음성 검출기 (Accurate Speech Detection based on Sub-band Selection for Robust Keyword Recognition)

  • 지미경;김회린
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2002년도 11월 학술대회지
    • /
    • pp.183-186
    • /
    • 2002
  • The speech detection is one of the important problems in real-time speech recognition. The accurate detection of speech boundaries is crucial to the performance of speech recognizer. In this paper, we propose a speech detector based on Mel-band selection through training. In order to show the excellence of the proposed algorithm, we compare it with a conventional one, so called, EPD-VAA (EndPoint Detector based on Voice Activity Detection). The proposed speech detector is trained in order to better extract keyword speech than other speech. EPD-VAA usually works well in high SNR but it doesn't work well any more in low SNR. But the proposed algorithm pre-selects useful bands through keyword training and decides the speech boundary according to the energy level of the sub-bands that is previously selected. The experimental result shows that the proposed algorithm outperforms the EPD-VAA.

  • PDF

논문 데이터베이스를 위한 텍스트 기반 유사도 계산 방안 (A Text-based Similarity Measure for Scientific Literature)

  • 윤석호;김상욱
    • 정보처리학회논문지D
    • /
    • 제18D권5호
    • /
    • pp.317-322
    • /
    • 2011
  • 본 논문에서는 기존 텍스트 기반 유사도 계산 방안을 이용해서 논문들 간의 유사도를 계산하는 방안에 대해서 논의한다. 먼저, 실험을 통해서 논문의 제목, 요약, 그리고 본문 중에서 어떤 부분이 유사도를 계산하는데 더 유용한지 확인하고 적절한 가중치를 부여한다. 두 번째로 논문의 텍스트 정보가 불완전한 상황에서 논문들 간의 유사도를 보다 정확하게 계산할 수 있는 키워드 확장 방안을 제안한다. 실제 논문 데이터베이스를 이용해서 제안하는 방안의 우수성을 검증한다.