Abstract
This paper addresses computing of similarity among papers using text-based measures. First, we analyze the accuracy of the similarities computed using different parts of a paper, and propose a method of Keyword-Extension, which is very useful when text information is incomplete. Via a series of experiments, we verify the effectiveness of Keyword-Extension.
본 논문에서는 기존 텍스트 기반 유사도 계산 방안을 이용해서 논문들 간의 유사도를 계산하는 방안에 대해서 논의한다. 먼저, 실험을 통해서 논문의 제목, 요약, 그리고 본문 중에서 어떤 부분이 유사도를 계산하는데 더 유용한지 확인하고 적절한 가중치를 부여한다. 두 번째로 논문의 텍스트 정보가 불완전한 상황에서 논문들 간의 유사도를 보다 정확하게 계산할 수 있는 키워드 확장 방안을 제안한다. 실제 논문 데이터베이스를 이용해서 제안하는 방안의 우수성을 검증한다.