• Title/Summary/Keyword: Keyword-based

Search Result 1,126, Processing Time 0.028 seconds

A Study on the Change of Knowledge Structure through Keyword Network Analysis : Focus on Business Model Research (키워드 네트워크 분석을 통한 지식구조 변화 연구 : 비즈니스 모델 연구를 중심으로)

  • Ryu, Jae Hong;Choi, Jinho
    • Journal of Information Technology Services
    • /
    • v.17 no.2
    • /
    • pp.143-163
    • /
    • 2018
  • The business models has a great impact on the successful management of enterprises. Business environment has been shifting from industrial economy to knowledge-based economy. Enterprises go through numerous trials for successful management in the changing environment. Along with trial tests, research areas have been growing simultaneously. Although many researches have been conducted with regard to business models, it is very insufficient to systematically analyze the knowledge flow of research. Accordingly, successive researchers who want to study the business model may find it difficult to establish the orientation of future application research based on understanding the process of changing the knowledge structure that have accumulated so far. This study is intended to determine the current state of the business model research and to understand the process of knowledge structure changes in keywords that appear in 2,667 business model articles in the SCOPUS database. Identifying the knowledge structure has been completed through social network analysis, a methodology based on the 'relationship', and the changes in the knowledge structure were identified by classifying them into four different periods. The analysis showed that, first, the number of business model co-author increases over time with the need for academic diversity. Second, the 'innovation' keyword has the biggest center in the network, and over time, the lower-rank keyword which was in the former period has emerged as the top-rank keyword. Third, the cohesiveness group decreased from 12 before 2000 to 5 in 2015 and also the modularity decreased as well. Finally, examining characteristics of study area through a cognitive map showed that the relationships between domains increased gradually over time. The study has provided a systematic basis for understanding the current state of the business model research and the process of changing knowledge structure. In addition, considering that no research has ever systematically analyzed the knowledge structure accumulated by individual researches, it is considered as a significant study.

Automatic Construction of Reduced Dimensional Cluster-based Keyword Association Networks using LSI (LSI를 이용한 차원 축소 클러스터 기반 키워드 연관망 자동 구축 기법)

  • Yoo, Han-mook;Kim, Han-joon;Chang, Jae-young
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1236-1243
    • /
    • 2017
  • In this paper, we propose a novel way of producing keyword networks, named LSI-based ClusterTextRank, which extracts significant key words from a set of clusters with a mutual information metric, and constructs an association network using latent semantic indexing (LSI). The proposed method reduces the dimension of documents through LSI, decomposes documents into multiple clusters through k-means clustering, and expresses the words within each cluster as a maximal spanning tree graph. The significant key words are identified by evaluating their mutual information within clusters. Then, the method calculates the similarities between the extracted key words using the term-concept matrix, and the results are represented as a keyword association network. To evaluate the performance of the proposed method, we used travel-related blog data and showed that the proposed method outperforms the existing TextRank algorithm by about 14% in terms of accuracy.

Design and Application of Multi Concept Keyword Model based on Web-using Information (웹 사용 정보에 기반한 다중 성향 키워드 모델의 설계와 응용)

  • Yoon, Tae-Bok;Lee, Seung-Hoon;Yoon, Kwang-Ho;Lee, Jee-Hyong
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.95-105
    • /
    • 2009
  • There are various studies to provide useful information for users on huge data of web-sites. Web usage mining among them is a method to extract meaningful patterns based on web users' log data. Most of existing patterns of web usage mining, however, had not considered users' diverse inclination but created general models. Web users' keywords can have various meaning upon their tendency and background knowledge. This study is for generating Multi Concept Keyword Model (MCK-Model) by analyzing web usage information on users' keywords of interest. MCK-Model can supply web page network for various inclination based on users' keywords of interest. Also, MCK-Model can be used to recommend the most proper web pages and it has been confirmed that the suggested method is useful enough.

  • PDF

Hot Keyword Extraction of Sci-tech Periodicals Based on the Improved BERT Model

  • Liu, Bing;Lv, Zhijun;Zhu, Nan;Chang, Dongyu;Lu, Mengxin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1800-1817
    • /
    • 2022
  • With the development of the economy and the improvement of living standards, the hot issues in the subject area have become the main research direction, and the mining of the hot issues in the subject currently has problems such as a large amount of data and a complex algorithm structure. Therefore, in response to this problem, this study proposes a method for extracting hot keywords in scientific journals based on the improved BERT model.It can also provide reference for researchers,and the research method improves the overall similarity measure of the ensemble,introducing compound keyword word density, combining word segmentation, word sense set distance, and density clustering to construct an improved BERT framework, establish a composite keyword heat analysis model based on I-BERT framework.Taking the 14420 articles published in 21 kinds of social science management periodicals collected by CNKI(China National Knowledge Infrastructure) in 2017-2019 as the experimental data, the superiority of the proposed method is verified by the data of word spacing, class spacing, extraction accuracy and recall of hot keywords. In the experimental process of this research, it can be found that the method proposed in this paper has a higher accuracy than other methods in extracting hot keywords, which can ensure the timeliness and accuracy of scientific journals in capturing hot topics in the discipline, and finally pass Use information technology to master popular key words.

A Study on Exploring Direction for Future Education for the Common Good Based on Big Data (빅데이터 기반 공동선 증진을 위한 미래교육 방향성 탐색 연구)

  • Kim, Byung-Man;Kim, Jung-In;Lee, Young-Woo;Lee, Kang-Hoon
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.2
    • /
    • pp.37-46
    • /
    • 2022
  • The purpose of this study is to provide basic data onto preparing soft landing plan of future education policy by exploring direction of future education for the common good using big data and keyword network analysis. Based on the big data provided by Textom, data was collected under the keyword 'future education + common Good' and then keyword network analysis was performed. As a result of the research, it was found that 'common good', 'social', 'KAIST future warning', 'measures', 'research', 'future education', 'politics' were common keywords in the social awareness of future education for the common good. The results of this study suggest that the social awareness of future education for the common good is related to factors related to human, physical environment, social response, academic interest, education policy, education plan, and related variables, It was closely related. Based on these results, we suggested implications for the support for the preparation of a soft landing plan of future education for the common good.

Development of a XML Web Services Retrieval Engine (XML 웹 서비스 검색 엔진의 개발)

  • Sohn, Seung-Beom;Oh, Il-Jin;Hwang, Yun-Young;Lee, Kyong-Ha;Lee, Kyu-Chul
    • Journal of Information Technology Applications and Management
    • /
    • v.13 no.4
    • /
    • pp.121-140
    • /
    • 2006
  • UDDI (Universal Discovery Description and Integration) Registry is used for Web Services registration and search. UDDI offers the search result to the keyword-based query. UDDI supports WSDL registration but it does not supports WSDL search. So it is required that contents based search and ranking using name and description in UDDI registration information and WSDL. This paper proposes a retrieval engine considering contents of services registered in the UDDI and WSDL. It uses Vector Space Model for similarity comparison between contents of those. UDDI registry information hierarchy and WSDL hierarchy are considered during searching process. This engine suppports two discovery methods. One is Keyword-based search and the other is template-based search supporting ranking for user's query. Template-based search offers how service interfaces correspond to the query for WSDL documents. Proposed retrieval engine can offer search result more accurately than one which UDDI offers and it can retrieve WSDL which is registered in UDDI in detail.

  • PDF

Comparison of Models for Stock Price Prediction Based on Keyword Search Volume According to the Social Acceptance of Artificial Intelligence (인공지능의 사회적 수용도에 따른 키워드 검색량 기반 주가예측모형 비교연구)

  • Cho, Yujung;Sohn, Kwonsang;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.103-128
    • /
    • 2021
  • Recently, investors' interest and the influence of stock-related information dissemination are being considered as significant factors that explain stock returns and volume. Besides, companies that develop, distribute, or utilize innovative new technologies such as artificial intelligence have a problem that it is difficult to accurately predict a company's future stock returns and volatility due to macro-environment and market uncertainty. Market uncertainty is recognized as an obstacle to the activation and spread of artificial intelligence technology, so research is needed to mitigate this. Hence, the purpose of this study is to propose a machine learning model that predicts the volatility of a company's stock price by using the internet search volume of artificial intelligence-related technology keywords as a measure of the interest of investors. To this end, for predicting the stock market, we using the VAR(Vector Auto Regression) and deep neural network LSTM (Long Short-Term Memory). And the stock price prediction performance using keyword search volume is compared according to the technology's social acceptance stage. In addition, we also conduct the analysis of sub-technology of artificial intelligence technology to examine the change in the search volume of detailed technology keywords according to the technology acceptance stage and the effect of interest in specific technology on the stock market forecast. To this end, in this study, the words artificial intelligence, deep learning, machine learning were selected as keywords. Next, we investigated how many keywords each week appeared in online documents for five years from January 1, 2015, to December 31, 2019. The stock price and transaction volume data of KOSDAQ listed companies were also collected and used for analysis. As a result, we found that the keyword search volume for artificial intelligence technology increased as the social acceptance of artificial intelligence technology increased. In particular, starting from AlphaGo Shock, the keyword search volume for artificial intelligence itself and detailed technologies such as machine learning and deep learning appeared to increase. Also, the keyword search volume for artificial intelligence technology increases as the social acceptance stage progresses. It showed high accuracy, and it was confirmed that the acceptance stages showing the best prediction performance were different for each keyword. As a result of stock price prediction based on keyword search volume for each social acceptance stage of artificial intelligence technologies classified in this study, the awareness stage's prediction accuracy was found to be the highest. The prediction accuracy was different according to the keywords used in the stock price prediction model for each social acceptance stage. Therefore, when constructing a stock price prediction model using technology keywords, it is necessary to consider social acceptance of the technology and sub-technology classification. The results of this study provide the following implications. First, to predict the return on investment for companies based on innovative technology, it is most important to capture the recognition stage in which public interest rapidly increases in social acceptance of the technology. Second, the change in keyword search volume and the accuracy of the prediction model varies according to the social acceptance of technology should be considered in developing a Decision Support System for investment such as the big data-based Robo-advisor recently introduced by the financial sector.

Keyword Data Analysis Using Bayesian Conjugate Prior Distribution (베이지안 공액 사전분포를 이용한 키워드 데이터 분석)

  • Jun, Sunghae
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.6
    • /
    • pp.1-8
    • /
    • 2020
  • The use of text data in big data analytics has been increased. So, much research on methods for text data analysis has been performed. In this paper, we study Bayesian learning based on conjugate prior for analyzing keyword data extracted from text big data. Bayesian statistics provides learning process for updating parameters when new data is added to existing data. This is an efficient process in big data environment, because a large amount of data is created and added over time in big data platform. In order to show the performance and applicability of proposed method, we carry out a case study by analyzing the keyword data from real patent document data.

Customized Web Search Rank Provision (개인화된 웹 검색 순위 생성)

  • Kang, Youngki;Bae, Joonsoo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.2
    • /
    • pp.119-128
    • /
    • 2013
  • Most internet users utilize internet portal search engines, such as Naver, Daum and Google nowadays. But since the results of internet portal search engines are based on universal criteria (e.g. search frequency by region or country), they do not consider personal interests. Namely, current search engines do not provide exact search results for homonym or polysemy because they try to serve universal users. In order to solve this problem, this research determines keyword importance and weight value for each individual search characteristics by collecting and analyzing customized keyword at external database. The customized keyword weight values are integrated with search engine results (e.g. PageRank), and the search ranks are rearranged. Using 50 web pages of Goolge search results for experiment and 6 web pages for customized keyword collection, the new customized search results are proved to be 90% match. Our personalization approach is not the way that users enter preference directly, but the way that system automatically collects and analyzes personal information and then reflects them for customized search results.

Patent Keyword Analysis for Forecasting Emerging Technology : GHG Technology (부상기술 예측을 위한 특허키워드정보분석에 관한 연구 - GHG 기술 중심으로)

  • Choe, Do Han;Kim, Gab Jo;Park, Sang Sung;Jang, Dong Sik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.139-149
    • /
    • 2013
  • As the importance of technology forecasting while countries and companies manage the R&D project is growing bigger, the methodology of technology forecasting has been diversified. One of the forecasting method is patent analysis. This research proposes quick forecasting process of emerging technology based on keyword approach using text mining. The forecasting process is following: First, the term-document matrix is extracted from patent documents by using text mining. Second, emerging technology keyword are extracted by analyzing the importance of word from utilizing mean values and standard deviation values of the term and the emerging trend of word discovered from time series information of the term. Next, association between terms is measured by using cosine similarity. finally, the keyword of emerging technology is selected in consequence of the synthesized result and we forecast the emerging technology according to the results. The technology forecasting process described in this paper can be applied to developing computerized technology forecasting system integrated with various results of other patent analysis for decision maker of company and country.