• Title/Summary/Keyword: Keyword-based

Search Result 1,126, Processing Time 0.027 seconds

A Dynamic exploration of Constructivism Research based on Citespace Software in the Filed of Education (교육학 분야에서 CiteSpace에 기초한 구성주의 연구 동향 탐색)

  • Jiang, Yuxin;Song, Sun-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.5
    • /
    • pp.576-584
    • /
    • 2022
  • As an important branch of cognitive psychology, "constructivism" is called a "revolution" in contemporary educational psychology, which has a profound influence on the field of pedagogy and psychology. Based on "WOS" database, this study selects "WOS Core database" and "KCI database", uses CiteSpace visualization software as analysis tool, and makes knowledge map analysis on the research literature of "constructivism" in the field of education in recent 35 years. Analysis directions include annual analysis, network connection analysis by country(region) branch, author, institution or University, and keyword analysis. The purpose of the analysis is to grasp the subject areas, research hotspots and future trends of the research on constructivism, and to provide theoretical reference for the research on constructivism. There are three conclusions from the study. 1. Studies on the subject of constructivism have continued from the 1980s to the present. It is now in a period of steady development. 2. Countries concerned with the subject of constructivism mainly include the United States, Canada, Britain, Australia and the Netherlands. The main research institutions and authors are mainly located in these countries. 3. Currently, the keywords constructivism research focus on the clusters of "instructional strategies", and the development of science and technology is affecting individual learning. In the future, instructional strategies will become the focus of structural constructivism research. With the development of instructional technology, it is necessary to conduct research related to the development of new teaching models.

The Path Taken by Korean Studies in the U.S. and the Path Korean Humanities Should Take - Youngju Ryu's Writers of the Winter Republic: Literature and Resistance in Park Chung Hee's Korea (미국 한국학이 가는 길, 한국 인문학이 나아갈 길 -유영주(Youngju Ryu), 『겨울 공화국의 작가: 박정희 시대 한국의 문학과 저항(Writers of the Winter Republic: Literature and Resistance in Park Chung Hee's Korea)』)

  • Chong, Ki-In
    • Journal of Popular Narrative
    • /
    • v.25 no.2
    • /
    • pp.279-302
    • /
    • 2019
  • This paper introduces Youngju Ryu's Writers of the Winter Republic: Literature and Resistance in Park Chung Hee's Korea, and examines its significance and limitations. The book examines the relationship between literature and politics during the Park Chung-hee Yushin era, focusing on Yang Sŏng-u, Kim Chi-ha, Yi Mun-gu, Cho Se-hŭi, and Hwang Sok-yong. The books starts by describing the relationship between the U.S. hegemony and the Park Chung-hee regime during the Cold War. The book shows how poets like Yang and Kim fought against the Park Chung-hee regime based on poems, trial records and memoirs, while it describes novelists such as Yi's resistance by how novels envisioned a community against the Park administration based on the keyword "neighborhood." This is significant in that it describes how literature from the Park Chung-hee era was able to stand on the front lines against the regime. However, it is regrettable that because the book adopts a heroic tale to describe their lives and literature, these are illuminated in a somewhat flat way. Also it is noteworthy that the lives and works of novelists after the 2000s were illuminated, but Yang and Kim's life and literature were not described. Furthermore, it is regrettable that women writers were not mentioned and its concept of "politics" is rather shallow. Overall, this book is very significant in that it introduces the relationship between Korean literature and politics in the Korea of the 1970s with rich data and a beautiful style, as well as allowing Korean studies researchers to reflect on the future of Korean studies.

ESG management should consider environmental sustainability (환경 측면의 고려가 절실하게 요구되는 ESG 경영)

  • Chang Seok Lee
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.248-256
    • /
    • 2023
  • ESG, which stands for Environmental, Social, and Governance, becomes a keyword in managing a company as it becomes an "indicator" that judge companies. Since the environment has suffered so much damage for economic development, it is now to reflect the enormous environmental costs of the future in the management standard rather than the immediate financial benefits at the expense of the environment. Compared to the days when corporate social responsibility (CSR) was discussed, ESG management has improved significantly as it requires practice beyond the declarative level, but the level of consideration for the environmental field is still not high. There may be many backgrounds, but the biggest problem may be the lack of understanding for other fields. Accordingly, this study aims to inform corporates of the need for investment in the environmental field by explaining ESG reviewed in the environmental field and ESG management required in the environmental field. Furthermore, another purpose is to inform them that ESG management is a win-win strategy that can have a meaningful effect not only in the environmental field where investment is received but also in terms of companies by explaining the benefits that companies can gain through this. To reach this goal, this study proposed a method of restoring a damaged ecosystem based on corporate investment, evaluating its effects based on carbon absorption capacity, and using it as a means of carbon neutrality practice as well as ESG management performance of a company.

Study on the Policy of Supporting University Students in the Beauty Field through Social Big Data Analysis: Based on exploratory data analytics (소셜 빅 데이터 분석을 통한 미용분야 대학생 창업지원 정책에 관한 연구 -탐색적 데이터 분석법을 기반으로-)

  • Mi-Yun Yoon;Nam-hoon Park
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.853-863
    • /
    • 2022
  • In order to revitalize start-ups in the beauty field, this study attempted to derive characteristic patterns of changes in demand and differences in emotions and meaning for 'beauty start-ups' by dividing the period by year from 2019 to 2021 based on exploratory data analysis (EDA). Most of the search terms related to the keyword "beauty start-up" showed more interest in institutions or certificates that can learn beauty skills than professional start-up education, which still does not recognize the importance of start-up education, and as an alternative, it is necessary to develop customized start-up education programs for each major. We establish hypotheses through exploratory data analysis and verify hypotheses by combining traditional corroborative data analysis (CDA). There has never been an exploratory data analysis method for beauty startups, and rather than mentioning the need for formal start-up education, analyzing changes in interest in beauty startups and the requirements of prospective start-ups with exploratory data will help develop customized start-up programs.

GPT-enabled SNS Sentence writing support system Based on Image Object and Meta Information (이미지 객체 및 메타정보 기반 GPT 활용 SNS 문장 작성 보조 시스템)

  • Dong-Hee Lee;Mikyeong Moon;Bong-Jun, Choi
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.3
    • /
    • pp.160-165
    • /
    • 2023
  • In this study, we propose an SNS sentence writing assistance system that utilizes YOLO and GPT to assist users in writing texts with images, such as SNS. We utilize the YOLO model to extract objects from images inserted during writing, and also extract meta-information such as GPS information and creation time information, and use them as prompt values for GPT. To use the YOLO model, we trained it on form image data, and the mAP score of the model is about 0.25 on average. GPT was trained on 1,000 blog text data with the topic of 'restaurant reviews', and the model trained in this study was used to generate sentences with two types of keywords extracted from the images. A survey was conducted to evaluate the practicality of the generated sentences, and a closed-ended survey was conducted to clearly analyze the survey results. There were three evaluation items for the questionnaire by providing the inserted image and keyword sentences. The results showed that the keywords in the images generated meaningful sentences. Through this study, we found that the accuracy of image-based sentence generation depends on the relationship between image keywords and GPT learning contents.

An Analysis of Arts Management-Related Studies' Trend in Korea using Topic Modeling and Semantic Network Analysis (토픽모델링과 의미연결망분석을 활용한 한국 예술경영 연구의 동향 변화 - 1988년부터 2017년까지 국내 학술논문 분석을 중심으로 -)

  • Hwang, SeoI;Park, Yang Woo
    • Korean Association of Arts Management
    • /
    • no.50
    • /
    • pp.5-31
    • /
    • 2019
  • The main purpose of this study was to use Deep Learning based Topic Modeling and Semantic Network Analysis to examine research trend of arts management-related papers in korea. For this purpose, research subjects such as 'The Journal of Cultural Policy', 'The Journal of Cultural Economics', 'The Journal of Culture Industry', 'The Journal of Arts Management', and 'The Journal of Human Content', which are the registered journal of the National Research Foundation of Korea directly or indirectly related to arts management field. From 1988 to 2017, a total of 2,110 domestic journals' signature, abstract, and keyword were analyzed. We tried Big Data analysis such as Topic Modeling and Semantic Network Analysis to examine changes in trends in arts management. The analysis program used open software R and standard statistical software SPSS. Based on the results of the analysis, the implications and limitations of the study and suggestions for future research were discussed. And the potential for development of convergent research such as Arts & Artificial Intelligence and Arts & Big Data.

Research trends in Journal of The Korean Society for School & Community Health Education on Vulnerable Populations from 2000 to 2023: Based on the elderly and people with disabilities (한국학교·지역보건교육학회지 2000년~2023년 취약 계층 연구 동향: 노인과 장애인을 중심으로)

  • Ye-Soon Kim;Young-Hee Nam
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.25 no.2
    • /
    • pp.71-81
    • /
    • 2024
  • Purpose: This study aims to identify research trends in papers related to the elderly and the disabled published in the journal of Korean society for school & community health education from 2000 to 2023 and seek the direction of the academic development of this journal in the future. Method: A total of 26 articles related to the elderly and the disabled, who are vulnerable groups, were analyzed by year by analyzing the specific subjects, research themes, research design, data collection methods, and keywords of papers published from 2000 to 2023. Results: Looking at the research subjects, studies on the elderly (18 studies) accounted for a larger proportion than studies on the disabled (8 studies). Research themes in the field of healthy living practices for the elderly (44.4%) and research in the field of mental health management (37.5%) for the disabled accounted for a high proportion. The design of research were mostly quantitative and cross-sectional studies. Data collection is mostly based on secondary data. In studies targeting the elderly, keywords appeared in the following order: 'Health' and 'Elderly'. And research targeting the disabled appeared in the following order: 'Disabilities', 'Health', and 'COVID-19'. Additionally, research on the elderly and the disabled has recently shown an increasing trend. Conclusion: Research on the elderly and the disabled has been conducted in line with the purpose of the Korean society for school & community health education, However, In terms of quantitative expansion and qualitative research, research themes, research designs, and data collection methods must be diversified. Methods, public perception. Additionally, research on vulnerable groups that fit the public health promotion and health education paradigm is needed.

The way to make training data for deep learning model to recognize keywords in product catalog image at E-commerce (온라인 쇼핑몰에서 상품 설명 이미지 내의 키워드 인식을 위한 딥러닝 훈련 데이터 자동 생성 방안)

  • Kim, Kitae;Oh, Wonseok;Lim, Geunwon;Cha, Eunwoo;Shin, Minyoung;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.1-23
    • /
    • 2018
  • From the 21st century, various high-quality services have come up with the growth of the internet or 'Information and Communication Technologies'. Especially, the scale of E-commerce industry in which Amazon and E-bay are standing out is exploding in a large way. As E-commerce grows, Customers could get what they want to buy easily while comparing various products because more products have been registered at online shopping malls. However, a problem has arisen with the growth of E-commerce. As too many products have been registered, it has become difficult for customers to search what they really need in the flood of products. When customers search for desired products with a generalized keyword, too many products have come out as a result. On the contrary, few products have been searched if customers type in details of products because concrete product-attributes have been registered rarely. In this situation, recognizing texts in images automatically with a machine can be a solution. Because bulk of product details are written in catalogs as image format, most of product information are not searched with text inputs in the current text-based searching system. It means if information in images can be converted to text format, customers can search products with product-details, which make them shop more conveniently. There are various existing OCR(Optical Character Recognition) programs which can recognize texts in images. But existing OCR programs are hard to be applied to catalog because they have problems in recognizing texts in certain circumstances, like texts are not big enough or fonts are not consistent. Therefore, this research suggests the way to recognize keywords in catalog with the Deep Learning algorithm which is state of the art in image-recognition area from 2010s. Single Shot Multibox Detector(SSD), which is a credited model for object-detection performance, can be used with structures re-designed to take into account the difference of text from object. But there is an issue that SSD model needs a lot of labeled-train data to be trained, because of the characteristic of deep learning algorithms, that it should be trained by supervised-learning. To collect data, we can try labelling location and classification information to texts in catalog manually. But if data are collected manually, many problems would come up. Some keywords would be missed because human can make mistakes while labelling train data. And it becomes too time-consuming to collect train data considering the scale of data needed or costly if a lot of workers are hired to shorten the time. Furthermore, if some specific keywords are needed to be trained, searching images that have the words would be difficult, as well. To solve the data issue, this research developed a program which create train data automatically. This program can make images which have various keywords and pictures like catalog and save location-information of keywords at the same time. With this program, not only data can be collected efficiently, but also the performance of SSD model becomes better. The SSD model recorded 81.99% of recognition rate with 20,000 data created by the program. Moreover, this research had an efficiency test of SSD model according to data differences to analyze what feature of data exert influence upon the performance of recognizing texts in images. As a result, it is figured out that the number of labeled keywords, the addition of overlapped keyword label, the existence of keywords that is not labeled, the spaces among keywords and the differences of background images are related to the performance of SSD model. This test can lead performance improvement of SSD model or other text-recognizing machine based on deep learning algorithm with high-quality data. SSD model which is re-designed to recognize texts in images and the program developed for creating train data are expected to contribute to improvement of searching system in E-commerce. Suppliers can put less time to register keywords for products and customers can search products with product-details which is written on the catalog.

A Lifelog Management System Based on the Relational Data Model and its Applications (관계 데이터 모델 기반 라이프로그 관리 시스템과 그 응용)

  • Song, In-Chul;Lee, Yu-Won;Kim, Hyeon-Gyu;Kim, Hang-Kyu;Haam, Deok-Min;Kim, Myoung-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.9
    • /
    • pp.637-648
    • /
    • 2009
  • As the cost of disks decreases, PCs are soon expected to be equipped with a disk of 1TB or more. Assuming that a single person generates 1GB of data per month, 1TB is enough to store data for the entire lifetime of a person. This has lead to the growth of researches on lifelog management, which manages what people see and listen to in everyday life. Although many different lifelog management systems have been proposed, including those based on the relational data model, based on ontology, and based on file systems, they have all advantages and disadvantages: Those based on the relational data model provide good query processing performance but they do not support complex queries properly; Those based on ontology handle more complex queries but their performances are not satisfactory: Those based on file systems support only keyword queries. Moreover, these systems are lack of support for lifelog group management and do not provide a convenient user interface for modifying and adding tags (metadata) to lifelogs for effective lifelog search. To address these problems, we propose a lifelog management system based on the relational data model. The proposed system models lifelogs by using the relational data model and transforms queries on lifelogs into SQL statements, which results in good query processing performance. It also supports a simplified relationship query that finds a lifelog based on other lifelogs directly related to it, to overcome the disadvantage of not supporting complex queries properly. In addition, the proposed system supports for the management of lifelog groups by providing ways to create, edit, search, play, and share them. Finally, it is equipped with a tagging tool that helps the user to modify and add tags conveniently through the ion of various tags. This paper describes the design and implementation of the proposed system and its various applications.

The Need for Paradigm Shift in Semantic Similarity and Semantic Relatedness : From Cognitive Semantics Perspective (의미간의 유사도 연구의 패러다임 변화의 필요성-인지 의미론적 관점에서의 고찰)

  • Choi, Youngseok;Park, Jinsoo
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.111-123
    • /
    • 2013
  • Semantic similarity/relatedness measure between two concepts plays an important role in research on system integration and database integration. Moreover, current research on keyword recommendation or tag clustering strongly depends on this kind of semantic measure. For this reason, many researchers in various fields including computer science and computational linguistics have tried to improve methods to calculating semantic similarity/relatedness measure. This study of similarity between concepts is meant to discover how a computational process can model the action of a human to determine the relationship between two concepts. Most research on calculating semantic similarity usually uses ready-made reference knowledge such as semantic network and dictionary to measure concept similarity. The topological method is used to calculated relatedness or similarity between concepts based on various forms of a semantic network including a hierarchical taxonomy. This approach assumes that the semantic network reflects the human knowledge well. The nodes in a network represent concepts, and way to measure the conceptual similarity between two nodes are also regarded as ways to determine the conceptual similarity of two words(i.e,. two nodes in a network). Topological method can be categorized as node-based or edge-based, which are also called the information content approach and the conceptual distance approach, respectively. The node-based approach is used to calculate similarity between concepts based on how much information the two concepts share in terms of a semantic network or taxonomy while edge-based approach estimates the distance between the nodes that correspond to the concepts being compared. Both of two approaches have assumed that the semantic network is static. That means topological approach has not considered the change of semantic relation between concepts in semantic network. However, as information communication technologies make advantage in sharing knowledge among people, semantic relation between concepts in semantic network may change. To explain the change in semantic relation, we adopt the cognitive semantics. The basic assumption of cognitive semantics is that humans judge the semantic relation based on their cognition and understanding of concepts. This cognition and understanding is called 'World Knowledge.' World knowledge can be categorized as personal knowledge and cultural knowledge. Personal knowledge means the knowledge from personal experience. Everyone can have different Personal Knowledge of same concept. Cultural Knowledge is the knowledge shared by people who are living in the same culture or using the same language. People in the same culture have common understanding of specific concepts. Cultural knowledge can be the starting point of discussion about the change of semantic relation. If the culture shared by people changes for some reasons, the human's cultural knowledge may also change. Today's society and culture are changing at a past face, and the change of cultural knowledge is not negligible issues in the research on semantic relationship between concepts. In this paper, we propose the future directions of research on semantic similarity. In other words, we discuss that how the research on semantic similarity can reflect the change of semantic relation caused by the change of cultural knowledge. We suggest three direction of future research on semantic similarity. First, the research should include the versioning and update methodology for semantic network. Second, semantic network which is dynamically generated can be used for the calculation of semantic similarity between concepts. If the researcher can develop the methodology to extract the semantic network from given knowledge base in real time, this approach can solve many problems related to the change of semantic relation. Third, the statistical approach based on corpus analysis can be an alternative for the method using semantic network. We believe that these proposed research direction can be the milestone of the research on semantic relation.