• Title/Summary/Keyword: Keyword-based

Search Result 1,126, Processing Time 0.03 seconds

XML Document Keyword Weight Analysis based Paragraph Extraction Model (XML 문서 키워드 가중치 분석 기반 문단 추출 모델)

  • Lee, Jongwon;Kang, Inshik;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2133-2138
    • /
    • 2017
  • The analysis of existing XML documents and other documents was centered on words. It can be implemented using a morpheme analyzer, but it can classify many words in the document and cannot grasp the core contents of the document. In order for a user to efficiently understand a document, a paragraph containing a main word must be extracted and presented to the user. The proposed system retrieves keyword in the normalized XML document. Then, the user extracts the paragraphs containing the keyword inputted for searching and displays them to the user. In addition, the frequency and weight of the keyword used in the search are informed to the user, and the order of the extracted paragraphs and the redundancy elimination function are minimized so that the user can understand the document. The proposed system can minimize the time and effort required to understand the document by allowing the user to understand the document without reading the whole document.

A Study of Personalized Retrieval System through Society of Korean Journal Articles of Science and Technology (개인화 검색시스템에 관한 연구 - 과학기술학회마을을 중심으로 -)

  • Kim, Kwang-Young;Kwak, Seung-Jin
    • Journal of Korean Library and Information Science Society
    • /
    • v.41 no.1
    • /
    • pp.149-165
    • /
    • 2010
  • In this research, we analyze about the general service provided by Society of Korean journal articles of science and technology. Personalized retrieval services which are suitable to the articles service were developed based on this. That is, there are personalized retrieval system based on user's keyword, authors navigation system, automatic topic recommendation system based on author's keyword, and similar user automatic recommendation system. In this research, personalized service methods being suitable to the articles service of Society tries to be considered through the user survey.

  • PDF

Keyword-Based Query Translation using Ontology Structure (온톨로지 구조를 활용한 키워드 기반 질의 변환)

  • Song, Hyun-Je;Noh, Tae-Gil;Park, Seong-Bae;Park, Se-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.953-957
    • /
    • 2009
  • This paper proposes a keyword-based query translation system for the semantic web. With the relationship between keywords and ontology structure information, the system converts keyword based queries into queries written by formal query language which is appropriate for the semantic web. As a result, casual web users could not only express queries easily but also obtain the better result.

An Entity-centric Integrated Search System Using URI (URI를 이용한 개체 중심적 통합 검색 시스템)

  • Jung, Han-Min;Lee, Mi-Kyoung;Sung, Won-Kyung
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.7
    • /
    • pp.405-416
    • /
    • 2008
  • To overcome the limitation of keyword-based integrated search, this study shows entity-centric integrated search method using URI scheme. Our system generates entity pages in ways of analyzing user's keyword and instances matched with it, selecting optimal entity type, and calling unit services simultaneously. Topic information extracted from articles is propagated to persons, institutions, and locations by reasoning for providing topic-centric information. With comparative experiments based on search results and usability tests, we proved that this approach is superior to keyword-based integrated search served by CiteSeer and Google Scholar.

A Study on MIS Curriculum and NCS-based Big Data Analysis Job Competency Using Keyword Network Analysis (키워드 네트워크 분석을 이용한 MIS 교과정보와 NCS 기반 빅데이터 분석 직무역량에 대한 연구)

  • Lee, Taewon;Sung, Haengnam;Kim, Eun-Jung
    • The Journal of Information Systems
    • /
    • v.29 no.4
    • /
    • pp.101-121
    • /
    • 2020
  • Purpose The purpose of this study is to understand the current status of MIS curriculum and to find ways to improve it. In addition, the results of the research can be used as basic data for improving MIS curriculum. Design/methodology/approach A research framework was designed to derive research results using the keyword network analysis method of this study: 1) Keywords were extracted based on the six units of the big data analysis job competency. 2) And based on the extracted keywords, the relationship between the keywords and MIS curriculum for each university was identified. Findings In the MIS curriculum information of a few universities, education related to big data analysis was conducted. 1) In the MIS curriculum of a few universities, education related to big data analysis was conducted. However, MIS curriculum of the university, which is the subject of analysis, education focused on concepts and theory rather than practical education was conducted. 2) And it was confirmed that there is a difference from the education required by the industry.

A Study of Keyword Spotting System Based on the Weight of Non-Keyword Model (비핵심어 모델의 가중치 기반 핵심어 검출 성능 향상에 관한 연구)

  • Kim, Hack-Jin;Kim, Soon-Hyub
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.381-388
    • /
    • 2003
  • This paper presents a method of giving weights to garbage class clustering and Filler model to improve performance of keyword spotting system and a time-saving method of dialogue speech processing system for keyword spotting by calculating keyword transition probability through speech analysis of task domain users. The point of the method is grouping phonemes with phonetic similarities, which is effective in sensing similar phoneme groups rather than individual phonemes, and the paper aims to suggest five groups of phonemes obtained from the analysis of speech sentences in use in Korean morphology and in stock-trading speech processing system. Besides, task-subject Filler model weights are added to the phoneme groups, and keyword transition probability included in consecutive speech sentences is calculated and applied to the system in order to save time for system processing. To evaluate performance of the suggested system, corpus of 4,970 sentences was built to be used in task domains and a test was conducted with subjects of five people in their twenties and thirties. As a result, FOM with the weights on proposed five phoneme groups accounts for 85%, which has better performance than seven phoneme groups of Yapanel [1] with 88.5% and a little bit poorer performance than LVCSR with 89.8%. Even in calculation time, FOM reaches 0.70 seconds than 0.72 of seven phoneme groups. Lastly, it is also confirmed in a time-saving test that time is saved by 0.04 to 0.07 seconds when keyword transition probability is applied.

Analysis of Trends in Science and Technology using Keyword Network Analysis (키워드 네트워크 분석을 활용한 과학기술동향 분석)

  • Park, Ju Seop;Kim, Na Rang;Han, Eun Jung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.2
    • /
    • pp.63-73
    • /
    • 2018
  • Academia and research institutes mainly use qualitative methods that rely on expert judgments to understand and predict research trends and science and technology trends. Since such a technique has the disadvantage of requiring much time and money, in this study, science and technology trends were predicted using keyword network analysis. To that end, 13,618 AI (Artificial Intelligence) patent abstracts were analyzed using keyword network analysis in three separate lots based on the period of the submission of each abstract: analysis period 1 (January 1, 2002 - December 31, 2006), analysis period 2 (January 1, 2007 - December 31, 2011), and analysis period 3 (January 1, 2012 - December 31, 2016). According to the results of frequency analyses, keywords related to methods in the field of AI application appeared more frequently as time passed from analysis period 1 to analysis period 3. In keyword network analyses, the connectivity between keywords related to methods in the field of AI application and other keywords increased over time. In addition, when the connected keywords that showed increasing or decreasing trends during the entire analysis period were analyzed, it could be seen that the connectivity to methods and management in the field of AI application was strengthened while the connectivity to the field of basic science and technology was weakened. According to analysis of keyword connection centrality, the centrality value of the field of AI application increased over time. According to analysis of keyword mediation centrality during analysis period 3, keywords related to methodologies in the field of AI application showed the highest mediation value. Therefore, it is expected that methods in the field of AI application will play the role of powerful intermediaries in AI hereafter. The technique presented in this paper can be employed in the excavation of tasks related to regional innovation or in fields such as social issue visualization.

Semantic Search System using Ontology-based Inference (온톨로지기반 추론을 이용한 시맨틱 검색 시스템)

  • Ha Sang-Bum;Park Yong-Tack
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.3
    • /
    • pp.202-214
    • /
    • 2005
  • The semantic web is the web paradigm that represents not general link of documents but semantics and relation of document. In addition it enables software agents to understand semantics of documents. We propose a semantic search based on inference with ontologies, which has the following characteristics. First, our search engine enables retrieval using explicit ontologies to reason though a search keyword is different from that of documents. Second, although the concept of two ontologies does not match exactly, can be found out similar results from a rule based translator and ontological reasoning. Third, our approach enables search engine to increase accuracy and precision by using explicit ontologies to reason about meanings of documents rather than guessing meanings of documents just by keyword. Fourth, domain ontology enables users to use more detailed queries based on ontology-based automated query generator that has search area and accuracy similar to NLP. Fifth, it enables agents to do automated search not only documents with keyword but also user-preferable information and knowledge from ontologies. It can perform search more accurately than current retrieval systems which use query to databases or keyword matching. We demonstrate our system, which use ontologies and inference based on explicit ontologies, can perform better than keyword matching approach .

An Improved Multi-Keyword Search Protocol to Protect the Privacy of Outsourced Cloud Data (아웃소싱된 클라우드 데이터의 프라이버시를 보호하기 위한 멀티 키워드 검색 프로토콜의 개선)

  • Kim, Tae-Yeon;Cho, Ki-Hwan;Lee, Young-Lok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.10
    • /
    • pp.429-436
    • /
    • 2017
  • There is a growing tendency to outsource sensitive or important data in cloud computing recently. However, it is very important to protect the privacy of outsourced data. So far, a variety of secure and efficient multi-keyword search schemes have been proposed in cloud computing environment composed of a single data owner and multiple data users. Zhang et. al recently proposed a search protocol based on multi-keyword in cloud computing composed of multiple data owners and data users but their protocol has two problems. One is that the cloud server can illegally infer the relevance between data files by going through the keyword index and user's trapdoor, and the other is that the response for the user's request is delayed because the cloud server has to execute complicated operations as many times as the size of the keyword index. In this paper, we propose an improved multi-keyword based search protocol which protects the privacy of outsourced data under the assumption that the cloud server is completely unreliable. And our experiments show that the proposed protocol is more secure in terms of relevance inference between the data files and has higher efficiency in terms of processing time than Zhang's one.

Efficient Keyword Extraction from Social Big Data Based on Cohesion Scoring

  • Kim, Hyeon Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.10
    • /
    • pp.87-94
    • /
    • 2020
  • Social reviews such as SNS feeds and blog articles have been widely used to extract keywords reflecting opinions and complaints from users' perspective, and often include proper nouns or new words reflecting recent trends. In general, these words are not included in a dictionary, so conventional morphological analyzers may not detect and extract those words from the reviews properly. In addition, due to their high processing time, it is inadequate to provide analysis results in a timely manner. This paper presents a method for efficient keyword extraction from social reviews based on the notion of cohesion scoring. Cohesion scores can be calculated based on word frequencies, so keyword extraction can be performed without a dictionary when using it. On the other hand, their accuracy can be degraded when input data with poor spacing is given. Regarding this, an algorithm is presented which improves the existing cohesion scoring mechanism using the structure of a word tree. Our experiment results show that it took only 0.008 seconds to extract keywords from 1,000 reviews in the proposed method while resulting in 15.5% error ratio which is better than the existing morphological analyzers.